参考文献/References:
[1] SHEN Shujun,DAI Weizhong,CHENG Jinfa.Fractional parabolic two-step model and its accurate numerical scheme for nanoscale heat conduction[J].Journal of Computational and Applied Mathematics,2020,375:112812.DOI:10.1016/j.cam.2020.112812.
[2] 孙志忠,高广花.分数阶微分方程的有限差分方法[M].北京:科学出版社,2015.
[3] HILFER R.Applications of fractional calculus in physics[M].Singapore:World Scientific,2000.
[4] SCALAS E,GORENFLO R,MAINARDI F.Fractional calculus and continuous-time finance[J].Physica A: Statistical Mechanics and Its Applications,2000,284(1/2/3/4):376-384.DOI:10.1016/S0378-4371(00)00255-7.
[5] ZHOU Liuzong,SELIM H M.Application of the fractional advection-dispersion equation in porous media[J].Soil Science Society of America Journal,2003,67(4):1079-1084.DOI:10.2136/sssaj2003.1079.
[6] AWAD E.On the generalized thermal lagging behavior[J].Journal of Thermal Stresses,2012,35(4):293-325.DOI:10.1080/01495739.2012.663682.
[7] JARAD F,ABDELJAWAD T,BALEANU D.Caputo-type modification of the Hadamard fractional derivatives[J].Advances in Difference Equations,2012,2012:142.DOI:10.1186/1687-1847-2012-142.
[8] GOHAR M,LI Changpin,YIN Chuntao.On Caputo-Hadamard fractional differential equations[J].International Journal of Computer Mathematics,2020,97:1459-1483.DOI:10.1080/00207160.2019.1626012.
[9] GOHAR M,LI Changpin,LI Zhiqiang.Finite difference methods for Caputo-Hadamard fractional differential equations[J].Mediterranean Journal of Mathematics,2020,17:194.DOI:10.1007/s00009-020-01605-4.
[10] GAMBO Y Y,JARAD F,BALEANU D,et al.On Caputo modification of the Hadamard fractional derivatives[J].Advances in Difference Equations,2014,2014:10.DOI:10.1186/1687-1847-2014-10.
[11] KILBAS A A.Hadamard-type fractional calculus[J].Journal of the Korean Mathematical Society,2001,38(6):1191-1204.
[12] KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier,2006.
[13] LI Changpin,WANG Zhen.The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis[J].Applied Numerical Mathematics,2019,140:1-22.DOI:10.1016/j.apnum.2019.01.007.
[14] GARRA R,MAINARDI F,SPADA G.A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus[J].Chaos, Solitons and Fractals,2017,102:333-338.DOI:10.1016/j.chaos.2017.03.032.
[15] SHOMALI Z,ABBASSI A.Investigation of highly non-linear dual-phase-lag model in nanoscale solid argon with temperature-dependent properties[J].International Journal of Thermal Sciences,2014,83:56-67.DOI:10.1016/j.ijthermalsci.2014.04.016.
[16] TZOU D Y.Nonlocal behavior in phonon transport[J].International Journal of Heat and Mass Transfer,2011,54(1/2/3):475-481.DOI:10.1016/j.ijheatmasstransfer.2010.09.022.
[17] WANG Moran,GUO Zengyuan.Understanding of temperature and size dependences of effective thermal conductivity of nanotubes[J].Physics Letters A,2010,374(42):4312-4315.DOI:10.1016/j.physleta.2010.08.058.