[1]沈淑君.数值求解纳米尺度热传导分数阶抛物两步模型[J].华侨大学学报(自然科学版),2023,44(1):133-140.[doi:10.11830/ISSN.1000-5013.202107037]
 SHEN Shujun.Numerical Solution for Nanoscale Heat Conduction Fractional Parabolic Two-Step Model[J].Journal of Huaqiao University(Natural Science),2023,44(1):133-140.[doi:10.11830/ISSN.1000-5013.202107037]
点击复制

数值求解纳米尺度热传导分数阶抛物两步模型()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第1期
页码:
133-140
栏目:
出版日期:
2023-01-10

文章信息/Info

Title:
Numerical Solution for Nanoscale Heat Conduction Fractional Parabolic Two-Step Model
文章编号:
1000-5013(2023)01-0133-08
作者:
沈淑君12
1. 华侨大学 数学科学学院, 福建 泉州 362021;2. 华侨大学 计算科学福建省高校重点实验室, 福建 泉州 362021
Author(s):
SHEN Shujun12
1. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China; 2. Fujian Province University Key Laboratory of Computational Science, Huaqiao University, Quanzhou 362021, China
关键词:
纳米尺度热传导 Caputo-Hadamard分数阶导数 Robin边界条件 紧有限差分格式
Keywords:
nanoscale heat conduction Caputo-Hadamard fractional-order derivative Robin’s boundary condition compact finite difference scheme
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.202107037
文献标志码:
A
摘要:
提出一个纳米尺度的分数阶抛物两步模型,得到金属纳米尺度热传导的精确数值格式.该模型是通过引入Caputo-Hadamard时间分数阶导数到抛物型两步能量输运方程中,并将其温度跃变边界条件耦合得到.数值格式基于空间四阶紧格式和Caputo-Hadamard时间分数阶导数的L1逼近格式而建立.通过2个算例验证模型和数值方法的准确性和适用性.
Abstract:
A nanoscale fractional parabolic two-step model is presented, and an accurate numerical scheme for nanoscale heat conduction in metals is obtained. The model is obtained by introducing Caputo-Hadamard fractional-order derivative in time to the original parabolic two-step energy transport, and then coupling them with temperature-jump boundary condition. The numerical scheme is developed based on the space fourth-order compact finite difference scheme and the L1 approximation for Caputo-Hadamard time fractional-order derivative. The accuracy and applicability of the new model and the numerical method are tested by two numerical examples.

参考文献/References:

[1] SHEN Shujun,DAI Weizhong,CHENG Jinfa.Fractional parabolic two-step model and its accurate numerical scheme for nanoscale heat conduction[J].Journal of Computational and Applied Mathematics,2020,375:112812.DOI:10.1016/j.cam.2020.112812.
[2] 孙志忠,高广花.分数阶微分方程的有限差分方法[M].北京:科学出版社,2015.
[3] HILFER R.Applications of fractional calculus in physics[M].Singapore:World Scientific,2000.
[4] SCALAS E,GORENFLO R,MAINARDI F.Fractional calculus and continuous-time finance[J].Physica A: Statistical Mechanics and Its Applications,2000,284(1/2/3/4):376-384.DOI:10.1016/S0378-4371(00)00255-7.
[5] ZHOU Liuzong,SELIM H M.Application of the fractional advection-dispersion equation in porous media[J].Soil Science Society of America Journal,2003,67(4):1079-1084.DOI:10.2136/sssaj2003.1079.
[6] AWAD E.On the generalized thermal lagging behavior[J].Journal of Thermal Stresses,2012,35(4):293-325.DOI:10.1080/01495739.2012.663682.
[7] JARAD F,ABDELJAWAD T,BALEANU D.Caputo-type modification of the Hadamard fractional derivatives[J].Advances in Difference Equations,2012,2012:142.DOI:10.1186/1687-1847-2012-142.
[8] GOHAR M,LI Changpin,YIN Chuntao.On Caputo-Hadamard fractional differential equations[J].International Journal of Computer Mathematics,2020,97:1459-1483.DOI:10.1080/00207160.2019.1626012.
[9] GOHAR M,LI Changpin,LI Zhiqiang.Finite difference methods for Caputo-Hadamard fractional differential equations[J].Mediterranean Journal of Mathematics,2020,17:194.DOI:10.1007/s00009-020-01605-4.
[10] GAMBO Y Y,JARAD F,BALEANU D,et al.On Caputo modification of the Hadamard fractional derivatives[J].Advances in Difference Equations,2014,2014:10.DOI:10.1186/1687-1847-2014-10.
[11] KILBAS A A.Hadamard-type fractional calculus[J].Journal of the Korean Mathematical Society,2001,38(6):1191-1204.
[12] KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier,2006.
[13] LI Changpin,WANG Zhen.The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis[J].Applied Numerical Mathematics,2019,140:1-22.DOI:10.1016/j.apnum.2019.01.007.
[14] GARRA R,MAINARDI F,SPADA G.A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus[J].Chaos, Solitons and Fractals,2017,102:333-338.DOI:10.1016/j.chaos.2017.03.032.
[15] SHOMALI Z,ABBASSI A.Investigation of highly non-linear dual-phase-lag model in nanoscale solid argon with temperature-dependent properties[J].International Journal of Thermal Sciences,2014,83:56-67.DOI:10.1016/j.ijthermalsci.2014.04.016.
[16] TZOU D Y.Nonlocal behavior in phonon transport[J].International Journal of Heat and Mass Transfer,2011,54(1/2/3):475-481.DOI:10.1016/j.ijheatmasstransfer.2010.09.022.
[17] WANG Moran,GUO Zengyuan.Understanding of temperature and size dependences of effective thermal conductivity of nanotubes[J].Physics Letters A,2010,374(42):4312-4315.DOI:10.1016/j.physleta.2010.08.058.

备注/Memo

备注/Memo:
收稿日期: 2021-07-27
通信作者: 沈淑君(1977-),女,副教授,博士,主要从事微分方程数值解的研究.E-mail:shensj12@sina.com.
基金项目: 国家自然科学基金资助项目(11501224); 福建省自然科学基金资助项目(2020J01074); 福建省高校创新团队发展计划,泉州市高层次人才团队项目(2017ZT012)
更新日期/Last Update: 2023-01-20