参考文献/References:
[1] ZHOU Yin,TUZEL O.Voxelnet: End-to-end learning for point cloud based 3D object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:4490-4499.
[2] YAN Yan,MAO Yuxing,LI Bo.Second: Sparsely embedded convolutional detection[J].Sensors,2018,18(10):3337.DOI:10.3390/s18103337.
[3] GRAHAM B,ENGELCKE M,VAN DER MAATEN L.3D semantic segmentation with submanifold sparse convolutional networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:9224-9232.DOI:10.48550/arXiv.1711.10275.
[4] LANG A H,VORA S,CAESAR H,et al.PointPillars: Fast encoders for object detection from point clouds[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:12689-12697.DOI:10.1109/CVPR.2019.01298.
[5] SHI Shaoshuai,GUO Chaoxu,JIANG Li,et al.PV-RCNN: Point-Voxel feature set abstraction for 3D object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2021:10529-10538.DOI:10.48550/arXiv.1912.13192.
[6] DENG Jiajun,SHI Shaoshuai,LI Peiwei,et al.Voxel R-CNN: Towards high performance Voxel-based 3D object detection[C]//AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2021:1201-1209.
[7] MA Ruiqi,CHEN Chi,YANG Bisheng,et al.CG-SSD: Corner guided single stage 3D object detection from LiDAR point cloud[EB/OL].(2022-02-24)[2022-03-28] .https://doi.org/10.48550/arXiv.2202.11868.
[8] XU Wencai,HU Jie,CHEN Ruinan,et al.Keypoint-aware single-stage 3D object detector for autonomous driving[J].Sensors,2022,22:1451.DOI:10.3390/s22041451.
[9] QI C R,SU Hao,MO Kaichun,et al.PointNet: Deep learning on point sets for 3D classification and segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:77-85.DOI:10.1109/CVPR.2017.16.
[10] QI C R, YI Li, SU Hao, et al.PointNet++: Deep hierarchical feature learning on point sets in a metric space [C]//Annual Conference on Neural Information Processing Systems.Long Beach:NIPS Press,2017:5099-5108.
[11] SHI Shaoshuai,WANG Xiaogang,LI Hongsheng.PointRCNN: 3D object proposal generation and detection from point cloud[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Angeles:IEEE Press,2019:770-779.DOI:10.48550/arXiv.1812.04244.
[12] YANG Zetong,SUN Yanan,LIU Shu,et al.3DSSD: Point-based 3D single stage object detector[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2020:11040-11048.DOI:10.1109/CVPR42600.2020.01105.
[13] SHI Weijing,RAJKUMA R.Point-GNN: Graph neural network for 3D object detection in a point cloud[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE Press,2020:1708-1716.DOI:10.1109/CVPR42600.2020.00178.
[14] XU Mutian,DING Runyu,ZHAO Hengshuang,et al.PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Press,2021:3172-3181.DOI:10.48550/arXiv.2103.14635.
[15] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision.Venice:IEEE Press,2017:2999-3007.DOI:10.1109/TPAMI.2018.2858826.
[16] CHEN Xiaozhi,MA Huimin,WAN Ji,et al.Multi-view 3D object detection network for autonomous driving[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:6526-6534.DOI:10.1109/CVPR.2017.691.
[17] KU J,MOZIFIAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Madrid:IEEE Press,2018:5750-5757.DOI:10.48550/arXiv.1712.02294.
[18] QI C R,LIU Wei,WU Chenxia,et al.Frustum PointNets for 3D object detection from RGB-D data[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:918-927.DOI:10.48550/arXiv.1711.08488.