[1]瞿贵军,林毅.桃蚜关键抗性基因挖掘及抗蚜Cry蛋白预测[J].华侨大学学报(自然科学版),2023,44(1):94-103.[doi:10.11830/ISSN.1000-5013.202206008]
 QU Guijun,LIN Yi.Discovery of Key Resistance Genes of Myzus persicae and Prediction of Anti-Aphid Cry Proteins[J].Journal of Huaqiao University(Natural Science),2023,44(1):94-103.[doi:10.11830/ISSN.1000-5013.202206008]
点击复制

桃蚜关键抗性基因挖掘及抗蚜Cry蛋白预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第1期
页码:
94-103
栏目:
出版日期:
2023-01-10

文章信息/Info

Title:
Discovery of Key Resistance Genes of Myzus persicae and Prediction of Anti-Aphid Cry Proteins
文章编号:
1000-5013(2023)01-0094-10
作者:
瞿贵军 林毅
华侨大学 化工学院, 福建 厦门 361021
Author(s):
QU Guijun LIN Yi
College of Chemical Engineering, Huaqiao University, Xiamen 361021
关键词:
Cry蛋白 桃蚜 生物信息学 抗性基因
Keywords:
Cry proteins Myzus persicae bioinformatics resistance gene
分类号:
R318.04
DOI:
10.11830/ISSN.1000-5013.202206008
文献标志码:
A
摘要:
为了挖掘桃蚜(Myzus persicae)的关键抗性基因并构建抗性调控网络,通过加权基因共表达网络分析(WGCNA)和差异表达基因分析(DEGs)对桃蚜抗性研究的GEO数据库进行分析,筛选出2 426个枢纽基因和2 263个差异表达基因探针.将关键抗性基因在String数据库中进行蛋白质相互作用(PPI)分析,获得154个桃蚜关键抗性基因,并绘制桃蚜的抗性调控网络.结果表明:acpp基因的上调表达可能是大多数Cry蛋白不能有效杀死桃蚜的原因之一;参考抗蚜Cry1Cb2蛋白和11个靶标蛋白的对接规则,通过同源建模和分子对接等生物信息学技术,预测了10个新的Cry蛋白可能对桃蚜具有杀虫活性.
Abstract:
In order to discover the key resistance genes of the peach aphid(Myzus persicae)and construct the resistance control network, the GEO database of the resistance study of the Myzus persicae was analyzed by weighted gene coexpression network analysis(WGCNA)and differentially expressed genes analysis(DEGs),and 2 426 hub genes and 2 263 differentially expressed gene probes were screened. The key resistance genes were analyzed by protein-protein interaction(PPI)in the String database,then 154 key resistance genes of Myzus persicae were obtained, and the resistance control network of Myzus persicae was drawn. The results showed that the upregulation of acpp gene might be one of the reasons that most Cry proteins could not effectively kill the Myzus persicae. Referring to the docking rules of the anti-aphid Cry1Cb2 proteins and 11 target proteins, 10 new Cry proteins were predicted to have insecticidal activity against Myzus persicae through bioinformatics techniques such as homology modeling and molecular docking.

参考文献/References:

[1] WEBER G.Genetic variability in host plant adaptation of the green peach aphid, Myzus persicae[J].Entomologia Experimentalis et Applicata,1985,38(1):49-56.DOI:10.1111/j.1570-7458.1985.tb03497.x.
[2] MINKS A K,HARREWIJN P.Aphids: Their biology, natural enemies and control[M].Amsterdam:Elsevier Science Publishers,1988.
[3] QIAN Li,JIA Fan,SUN Jingxuan,et al.Effect of the secondary symbiont Hamiltonella defensa on fitness and relative abundance of Buchnera aphidicola of wheat aphid, Sitobion miscanthi[J].Frontiers in Microbiology,2018,9:582-591.DOI:10.3389/fmicb.2018.00582.
[4] MARGARITOPOULOS J T,KATI A N,VOUDOURIS C C,et al.Long-term studies on the evolution of resistance of Myzus persicae(Hemiptera: Aphididae)to insecticides in Greece[J].Bulletin of Entomological Research,2021,111(1):1-16.DOI:10.1017/S0007485320000334.
[5] PYM A,UMINA P A,REIDY-CROFTS J,et al.Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae[J].Insect Biochemistry and Molecular Biology,2022,143:103743.DOI:10.1016/j.ibmb.2022.103743.
[6] SPARKS T C,STORER N,PORTER A,et al.Insecticide resistance management and industry: The origins and evolution of the Insecticide Resistance Action Committee(IRAC)and the mode of action classification scheme[J].Pest Management Science,2021,77(6):2609-2619.DOI:10.1002/ps.6254.
[7] ZHAO Xiaodi,ZHANG Binwu,FU Lijun,et al.Possible insecticidal mechanism of cry41-related toxin against Myzus persicae by enhancing cathepsin B activity[J].Journal of Agricultural and Food Chemistry,2020,68(16):4607-4615.DOI:10.1021/acs.jafc.0c01020.
[8] TORRES-QUINTERO M C,ARENAS-SOSA I,ZU?IGA-NAVARRETE F,et al.Characterization of insecticidal Cry1Cb2 protein from Bacillus thuringiensis toxic to Myzus persicae(Sulzer)[J].Journal of Invertebrate Pathology,2022,189:107731.DOI:10.1016/j.jip.2022.107731.
[9] ZHANG Bin,HORVATH S.A general framework for weighted gene co-expression network analysis[J].Statistical Applications in Genetics and Molecular Biology,2005,4(1):1-45.DOI:10.2202/1544-6115.1128.
[10] RITCHIE M E,PHIPSON B,WU Di,et al.Limma powers differential expression analyses for RNA-sequencing and microarray studies[J].Nucleic Acids Research,2015,43(7):e47.DOI:10.1093/nar/gkv007.
[11] HE Zhangjiang,ZHAO Xin,LU Zhuoyue,et al.Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana[J].Journal of Invertebrate Pathology,2018,151:169-181.DOI:10.1016/j.jip.2017.12.002.
[12] LI Dandan,ZHANG Chi,TONG Zeqian,et al.Transcriptome response comparison between vector and non-vector aphids after feeding on virus-infected wheat plants[J].BMC Genomics,2020,21(1):1-14.DOI:10.1186/s12864-020-07057-0.
[13] CHIN C H,CHEN S H,WU H H,et al.CytoHubba: Identifying hub objects and sub-networks from complex interactome[J].BMC Systems Biology,2014,8(4):1-7.DOI:10.1186/1752-0509-8-S4-S11.
[14] RAMSEY J S,JANDER G.Testing nicotine tolerancein aphids using an artificial diet experiment[J].Journal of Visualized Experiments,2008(15):e701.DOI:10.3791/701.
[15] SILVA A X,JANDER G,SAMANIEGO H,et al.Insecticide resistance mechanisms in the green peach aphid Myzus persicae(Hemiptera: Aphididae)Ⅰ: A transcriptomic survey[J].Plos One,2012,7(6):e36366.DOI:10.1371/journal.pone.0036366.
[16] CUTLER P,SLATER R,EDMUNDS A J F,et al.Investigating the mode of action of sulfoxaflor: A fourth-generation neonicotinoid[J].Pest Management Science,2013,69(5):607-619.DOI:10.1002/ps.3413.
[17] PUINEAN A M,FOSTER S P,OLIPHANT L,et al.Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae[J].Plos Genetics,2010,6(6):e1000999.DOI:10.1371/journal.pgen.1000999.
[18] NABESHIMA T,KOZAKI T,TOMITA T,et al.An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae[J].Biochemical and Biophysical Research Communications,2003,307(1):15-22.DOI:10.1016/S0006-291X(03)01101-X.
[19] BASS C,PUINEAN A M,ZIMMER C T,et al.The evolution of insecticide resistance in the peach potato aphid, Myzus persicae[J].Insect Biochemistry and Molecular Biology,2014,51:41-51.DOI:10.1016/j.ibmb.2014.05.003.
[20] ELEFTHERIANOS I,FOSTER S P,WILLIAMSON M S,et al.Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae(Sulzer)[J].Bulletin of Entomological Research,2008,98(2):183-191.DOI:10.1017/S0007485307005524.
[21] FFRENCH-CONSTANT R H,ANTHONY N,ARONSTEIN K,et al.Cyclodiene insecticide resistance: From molecular to population genetics[J].Annual Review of Entomology,2000,45(1):449-466.DOI:10.1146/annurev.ento.45.1.449.
[22] GUO Zhaojiang,KANG Shi,ZHU Xun,et al.The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management[J].Scientific Reports,2015,5(1):1-14.DOI:10.1038/sre p13728.
[23] FALABELLA P,RIVIELLO L,DE STRADIS M L,et al.Aphidius ervi teratocytes release an extracellular enolase[J].Insect Biochemistry and Molecular Biology,2009,39(11):801-813.DOI:10.1016/j.ibmb.2009.09.005.
[24] BADARIOTTI F,KYPRIOTOU M,LELONG C,et al.The phylogenetically conserved molluscan chitinase-like protein 1(Cg-Clp1), homologue of human HC-gp39, stimulates proliferation and regulates synthesis of extracellular matrix components of mammalian chondrocytes[J].Journal of Biological Chemistry,2006,281(40):29583-29596.DOI:10.1074/jbc.M605687200.
[25] SATO S,ISHIKAWA H.Structure and expression of the dnaKJ operon of Buchnera, an intracellular symbiotic bacteria of aphid[J].The Journal of Biochemistry,1997,122(1):41-48.DOI:10.1093/oxfordjournals.jbchem.a021738.
[26] SABRI A,VANDERMOTEN S,LEROY P D,et al.Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins[J].Plos One,2013,8(9):e74656.DOI:10.1371/journal.pone.0074656.
[27] HUEN J,LIN C L,GOLZARROSHAN B,et al.Structural insights into a unique dimeric DEAD-box helicase CshA that promotes RNA decay[J].Structure,2017,25(3):469-481.DOI:10.1016/j.str.2017.01.012.
[28] KINOSHITA Y,JARELL A D,FLAMAN J M,et al.Pescadillo, a novel cell cycle regulatory protein abnormally expressed in malignant cells[J].Journal of Biological Chemistry,2001,276(9):6656-6665.DOI:10.1074/jbc.M008536200.
[29] KELLNER M,ROHRMOSER M,FORNéI,et al.DEAD-box helicase DDX27 regulates 3’ end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex[J].Experimental Cell Research,2015,334(1):146-159.DOI:10.1016/j.yexcr.2015.03.017.
[30] SERBA D D,MENG X,SCHNABLE J,et al.Comparative transcriptome analysis reveals genetic mechanisms of sugarcane aphid resistance in grain sorghum[J].International Journal of Molecular Sciences,2021,22(13):7129.DOI:10.3390/ijms22137129.
[31] HAFRéN A,MACIA J L,LOVE A J,et al.Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles[J].Proceedings of the National Academy of Sciences,2017,114(10):2026-2035.DOI:10.1073/pnas.1610687114.
[32] KHANDEKAR S S,DAINES R A,LONSDALE J T.Bacterial β-ketoacyl-acyl carrier protein synthases as targets for antibacterial agents[J].Current Protein and Peptide Science,2003,4(1):21-29.DOI:10.2174/1389203033 380377.
[33] SCHULTZ D J,CAHOON E B,SHANKLIN J,et al.Expression of a delta 9 14: 0-acyl carrier protein fatty acid desaturase gene is necessary for the production of omega 5 anacardic acids found in pest-resistant geranium(Pelargonium xhortorum)[J].Proceedings of the National Academy of Sciences,1996,93(16):8771-8775.DOI:10.1073/pnas.93.16.8771.
[34] PARDO-LOPEZ L,SOBERON M,BRAVO A.Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection[J].FEMS Microbiology Reviews,2013,37(1):3-22.DOI:10.1111/j.1574-6976.2012.00341.x.

备注/Memo

备注/Memo:
收稿日期: 2022-06-08
通信作者: 林毅(1976-),男,教授,博士,博士生导师,主要从事苏云金芽胞杆菌与昆虫之间的分子互作的研究.E-mail:lyhxm@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(31772227); 国家重点研发计划项目(2017YFD0201201)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2023-01-20