[1]葛文雅,李平.移动机器人全局动态路径规划融合算法[J].华侨大学学报(自然科学版),2022,43(6):809-818.[doi:10.11830/ISSN.1000-5013.202203051]
 GE Wenya,LI Ping.Global Dynamic Path Planning Fusion Algorithm for Mobile Robot[J].Journal of Huaqiao University(Natural Science),2022,43(6):809-818.[doi:10.11830/ISSN.1000-5013.202203051]
点击复制

移动机器人全局动态路径规划融合算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第6期
页码:
809-818
栏目:
出版日期:
2022-11-11

文章信息/Info

Title:
Global Dynamic Path Planning Fusion Algorithm for Mobile Robot
文章编号:
1000-5013(2022)06-0809-10
作者:
葛文雅 李平
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
GE Wenya LI Ping
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
路径规划 动态避障 双速度模型 动态窗口法 移动机器人
Keywords:
path planning dynamic obstacle avoidance two-velocity model dynamic window method mobile robot
分类号:
TP242
DOI:
10.11830/ISSN.1000-5013.202203051
文献标志码:
A
摘要:
针对移动机器人全局动态路径规划效率较低的问题,提出一种基于安全A*算法与双速度模型动态窗口法的全局动态路径规划融合算法.首先,通过安全A*算法得到全局最优路径节点,将其作为临时目标节点,为动态规划提供全局信息,避免出现局部最优.然后,采用时间序列Bottom-Up算法减少路径节点数,从而减少迭代次数、计算代价和储存代价,提高算法效率.最后,采用双速度模型对动态窗口法进行改进,通过避障重规划机制,解决全局动态路径规划时移动机器人绕远甚至绕圈的问题,并通过MATLAB平台进行仿真实验.仿真结果表明:文中算法的规划效率可提高46.18%,保证了路径的安全性和移动机器人速度的平稳性,文中算法的路径质量和规划效率更佳.
Abstract:
Aiming at the low efficiency of global dynamic path planning of mobile robot, a global dynamic path planning fusion algorithm based on safety A* algorithm and dynamic window method with the two-velocity model is proposed. Firstly, the global optimal path node is obtained through the safety A* algorithm, which is used as the temporary target node to provide global information for dynamic planning and avoid local optimization. Then, the time series Bottom-Up algorithm is used to reduce the number of path nodes, so as to reduce the number of iterations, computational cost and storage cost, and improve the efficiency of the algorithm. Finally, the two-velocity model is used to enhance the dynamic window method, and through the obstacle avoidance and replanning mechanism to solve the problem of mobile robot going far or even in circle in global dynamic path planning, and the simulation experiment is carried out on the MATLAB platform. The simulation results show that the planning efficiency of the proposed algorithm can be improved by 46.18%, which ensures the safety of the path and the stability of the speed of the mobile robot, the path quality and planning efficiency of the proposed algorithm are better.

参考文献/References:

[1] 胡春阳,姜平,周根荣.改进蚁群算法在AGV路径规划中的应用[J].计算机工程与应用,2020,56(8):270-278.DOI:10.3778/j.issn.1002-8331.1911-0282.
[2] TAI Lei,LIU Ming.A robot exploration strategy based on Q-learning network[C]//IEEE International Conference on Real-Time Computing and Robotics.Angkor Wat:IEEE Press,2016:57-62.DOI:10.1109/RCAR.2016.7784001.
[3] MAC T T,COPOT C,TRAN D T,et al.Heuristic approaches in robot path planning: A survey[J].Robotics and Autonomous Systems,2016,86:13-28.DOI:10.1016/j.robot.2016.08.001.
[4] YU Lijun,WEI Zhihong,WANG Hui,et al.Path planning for mobile robot based on fast convergence ant colony algorithm[C]//IEEE International Conference on Mechatronics and Automation.Takamatsu:IEEE Press,2017:1493-1497.DOI:10.1109/ICMA.2017.8016037.
[5] KWAME A B,RYAD C,YAW A A,et al.An overview of nature-inspired, conventional, and hybrid methods of autonomous vehicle path planning[J].Journal of Advanced Transportation,2018,2018:1-27.DOI:10.1155/2018/826 9698.
[6] 张志文,张鹏,毛虎平,等.融合改进A*算法和动态窗口法的全局动态路径规划[J].电光与控制,2021,28(9):39-43.DOI:10.3969/j.issn.1671-637X.2021.09.009.
[7] 林依凡,陈彦杰,何炳蔚,等.无碰撞检测RRT*的移动机器人运动规划方法[J].仪器仪表学报,2020,41(10):257-267.DOI:10.19650/j.cnki.cjsi.J2006856.
[8] DOOPALAM T,BYAMBAA D,JIN L D.Hybrid motion planning method for autonomous robots using kinect based sensor fusion and virtual plane approach in dynamic environments[J].Journal of Sensors,2015(5):1-13.DOI:10.1155/2015/471052.
[9] JIAO Zhuqing,MA Kai,RONG Yiling,et al.A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs[J].Journal of Computational Science,2018,25:50-57.DOI:10.1016/j.jocs.2018.02.004.
[10] FAZLOLLAHTABAR H,HASSANLI S.Hybrid cost and time path planning for multiple autonomous guided vehicles[J].Applied Intelligence,2018,48(2):482-498.DOI:10.1007/s10489-017-0997-x.
[11] 李志锟,黄宜庆,徐玉琼.改进变步长蚁群算法的移动机器人路径规划[J].电子测量与仪器学报,2020,32(8):15-21.DOI:10.13382/j.jemi.B1902697.
[12] 张旭,程传奇,郝向阳,等.一种兼顾全局与局部特性的机器人动态路径规划算法[J].测绘科学技术学报,2018,35(3):315-320.DOI:10.3969/j.issn.1673-6338.2018.03.018.
[13] 贾丙佳,李平.邻近障碍物整体化的机器人路径规划[J].华侨大学学报(自然科学版),2019,40(6):799-805.DOI:10.11830/ISSN.1000-5013.201903010.
[14] 王志中.复杂动态环境下自主机器人路径规划研究[J].组合机床与自动化加工技术,2018(1):150-154.DOI:10.19287/j.cnki.1005-2402.2018.02.031.
[15] 程传奇,郝向阳,李建胜,等.融合改进A*算法和动态窗口法的全局动态路径规划[J].西安交通大学学报,2017,51(11):137-143.DOI:10.7652/xjtuxb201711019.
[16] 王凡,李铁军,刘今越,等.基于BIM的建筑机器人自主路径规划及避障研究[J].计算机工程与应用,2020,56(17):224-230.DOI:10.3778/j.issn.1002-8331.1911-0178.
[17] JI Xianyou,FENG Shuo,HAN Qidong,et al.Improvement and fusion of A* algorithm and dynamic window approach considering complex environmental information[J].Arabian Journal for Science and Engineering,2021,46:7445-7459.DOI:1007/s13369-021-05445-6.
[18] LIU Lisan,YAO Jinxin,HE Dongwei,et al.Global dynamic path planning fusion algorithm combining Jump-A* algorithm and dynamic window approach[J].IEEE Access,2021,9:19632-19638.DOI:10.1109/ACCESS.2021.3052865.
[19] 程向红,祁艺.基于栅格法的室内指示路径规划算法[J].中国惯性技术学报,2018,26(2):236-240,267.DOI:10.13695/j.cnki.12-1222/o3.2018.02.015.
[20] 任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模[J].智能系统学报,2009,4(6):534-537.DOI:10.3969/j.issn.1673-4785.2009.06.011.
[21] FOX D,BURGARD W.The dynamic window approach to collision avoidance[J].IEEE Robotics and Automation Magazine,1997,4(1):23-33.DOI:10.1109/100.580977.
[22] TANG Hongwei,SUN Wei,YU Hongshan,et al.A multirobot target searching method based on bat algorithm in unknown environments[J].Expert Systems with Application,2020,141:112945(1-12).DOI:10.1016/j.eswa.201 9.112945.

相似文献/References:

[1]杨四海.多障碍离散路径规划的遗传算法求解[J].华侨大学学报(自然科学版),2006,27(3):317.[doi:10.3969/j.issn.1000-5013.2006.03.026]
 Yang Sihai.Path Planning in the Environment Containing Large Numbers of Obstacles Using Genetic Algorithm[J].Journal of Huaqiao University(Natural Science),2006,27(6):317.[doi:10.3969/j.issn.1000-5013.2006.03.026]

备注/Memo

备注/Memo:
收稿日期: 2022-03-29
通信作者: 李平(1981-),女,副教授,博士,主要从事非线性系统与智能控制、复杂控制系统的研究.通信方式:E-mail:pingping_1213@126.com.
基金项目: 国家自然科学基金资助项目(61603144); 福建省自然科学基金资助项目(2018J01095); 福建省高校产学合作科技重大项目(2013H6016); 华侨大学中青年教师科技创新资助计划项目(ZQN-PY509)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2022-11-20