参考文献/References:
[1] WU Yuankang,CHANG S M,MANDAL P.Grid-connected wind power plants: A survey on the integration requirements in modern grid codes[C]//IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference.Calgary:IEEE Press,2019:1-9.DOI:10.1109/ICPS.2019.8733382.
[2] LU Xiaoxing,LI Kangping,XU Hanchen,et al.Fundamentals and business model for resource aggregator of demand response in electricity markets[J].Energy,2020,204:117885.DOI:10.1016/j.energy.2020.117885.
[3] WANG Fei,XIANG Biao,LI Kangping,et al.Smart households’ aggregated capacity forecasting for load aggregators under incentive-based demand response programs[J].IEEE Transactions on Industry Applications,2020,56(2):1086-1097.DOI:10.1109/TIA.2020.2966426.
[4] WANG Fei,LI Kangping,DUIC N,et al.Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns[J].Energy Conversion and Management,2018,171:839-854.DOI:10.1016/j.enconman.2018.06.017.
[5] WEN Yuxin,ALHAKEEM D,MANDAL P,et al.Performance evaluation of probabilistic methods based on bootstrap and quantile regression to quantify PV power point forecast uncertainty[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(4):1134-1144.DOI:10.1109/TNNLS.2019.2918795.
[6] WU Yuankang,SU Poen,WU Tingyi,et al. Probabilistic wind power forecasting using weather ensemble models[C]//IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference.Niagara Falls:IEEE Press,2018:1-8.DOI:10.1109/ICPS.2018.8369963.
[7] WU Yuankang,HONG Jingshan,SU Poen.Stratification-based wind power forecasting in a high penetration wind power system using a hybrid model with charged system search algorithm[C]//IEEE Industry Applications Society Annual Meeting.Addison:IEEE Press,2015:1-9.DOI:10.1109/IAS.2015.7356793.
[8] LIU Meng,QUILUMBA F L,LEE W J.Dispatch scheduling for a wind farm with hybrid energy storage based on wind and LMP forecasting[J].IEEE Transactions on Industry Applications,2015,51(3):1970-1977.DOI:10.1109/TIA.2014.2372043.
[9] SHI Jie,DING Zhaohao,LEE W J,et al.Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features[J].IEEE Transactions on Smart Grid,2014,5(1):521-526.DOI:10.1109/TSG.2013.2283269.
[10] WANG Fei,XUAN Zhiming,ZHEN Zhao,et al.A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J].Energy Conversion and Management,2020,212:112766.DOI:10.1016/j.enconman.2020.112766.
[11] WANG Fei,XUAN Zhiming,ZHEN Zhao,et al.A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model[J].Energy Conversion and Management,2020,220:113075.DOI:10.1016/j.enconman.2020.113075.
[12] ZHEN Zhao,LIU Jiaming,ZHANG Zhanyao,et al.Deep learning based surface irradiance mapping model for solar PV power forecasting using sky image[J].IEEE Transactions on Industry Applications,2020,56(4):3385-3396.DOI:10.1109/TIA.2020.2984617.
[13] COSTA A,CRESPO A,NAVARRO J,et al.A review on the young history of the wind power short-term prediction[J].Renewable and Sustainable Energy Reviews,2008,12(6):1725-1744.DOI:10.1016/j.rser.2007.01.015.
[14] ALENCAR D B,AFFONSO C,OLIVEIRA R C L,et al.Different models for forecasting wind power generation: Case study[J].Energies,2017,10(12):1976.DOI:10.3390/en10121976.
[15] FOLEY A M,LEAHY P G,MCKEOGH E J.Wind power forecasting & prediction methods[C]//9th International Conference on Environment and Electrical Engineering.Prague:IEEE Press,2010:61-64.DOI:10.1109/EEEIC.2010.5490016.
[16] CHANG G W, LU H J, HSU L Y,et al.A hybrid model for forecasting wind speed and wind power generation[C]//IEEE Power and Energy Society General Meeting.Boston:IEEE Press,2016:1-5.DOI:10.1109/PESGM.2016.7742039.
[17] YU Ruiguo,GAO Jie,YU Mei,et al.LSTM-EFG for wind power forecasting based on sequential correlation features[J].Future Generation Computer Systems,2019,93:33-42.DOI:10.1016/j.future.2018.09.054.
[18] CAO Yukun,GUI Liai.Multi-step wind power forecasting model using LSTM networks, similar time series and LightGBM[C]//5th International Conference on Systems and Informatics.Nanjing:IEEE Press,2018:192-197.DOI:10.1109/icsai.2018.8599498.
[19] LIU Yao,GUAN Lin,HOU Chen,et al.Wind power short-term prediction based on LSTM and discrete wavelet transform[J].Applied Sciences,2019,9(6):1108.DOI:10.3390/app9061108.
[20] LEA C,VIDAL R,REITER A,et al.Temporal convolutional networks: A unified approach to action segmentation[C]//European Conference on Computer Vision 2016 Workshops.Amsterdam:Springer,2016:47-54.DOI:10.1007/978-3-319-49409-8_7.