[1]郑知航,曾志兴,LIU Angela,等.带连接板的空心板整浇楼面耐火性能分析[J].华侨大学学报(自然科学版),2022,43(5):603-611.[doi:10.11830/ISSN.1000-5013.202204034]
 ZHENG Zhihang,ZENG Zhixing,LIU Angela,et al.Analysis on Fire Resistance Performance of Hollow-Core Slab Integrated Floor With Link Slab[J].Journal of Huaqiao University(Natural Science),2022,43(5):603-611.[doi:10.11830/ISSN.1000-5013.202204034]
点击复制

带连接板的空心板整浇楼面耐火性能分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第5期
页码:
603-611
栏目:
出版日期:
2022-09-13

文章信息/Info

Title:
Analysis on Fire Resistance Performance of Hollow-Core Slab Integrated Floor With Link Slab
文章编号:
1000-5013(2022)05-0603-09
作者:
郑知航1 曾志兴1 LIU Angela2 罗漪1
1. 华侨大学 土木工程学院, 福建 厦门 361021;2. Building Research Association of New Zealand, Porirua 5381
Author(s):
ZHENG Zhihang1 ZENG Zhixing1 LIU Angela2 LUO Yi1
1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China; 2. Building Research Association of New Zealand, Porirua 5381, New Zealand
关键词:
空心板整浇楼面 连接板 火灾 有限元分析
Keywords:
hollow-core slab integrated floor link slab fire finite element analysis
分类号:
TU378.5;TU352.502
DOI:
10.11830/ISSN.1000-5013.202204034
文献标志码:
A
摘要:
为分析带连接板的空心板整浇楼面试件的耐火性能,通过有限元分析方法,建立恒载升温下的空心板整浇楼面试件的数值分析模型,并与试验结果进行对比和验证.基于验证后的有限元模型,分析荷载水平、空心几何尺寸、现浇楼板钢筋网屈服强度和空心板端可压缩层厚度对空心板整浇楼面耐火性能的影响.结果表明:试件的破坏形态、温度场分布、板面挠度变化的模拟结果与试验结果吻合较好;邻近连接板的空心板肋部发生连贯破坏;通过生死单元法能较好地还原破坏现象对后续温度及变形发展趋势的影响;连接板构造是空心板整浇楼面隔热较弱部分,不利于整体结构防火;随着荷载水平的提高,试件的耐火极限显著降低,试件连接板与空心板交界处及现浇板的中心区域发生破坏;空心尺寸改变、钢筋网强度减少、可压缩层厚度增加均会使空心板整浇楼面的耐火性能出现不同程度的下降.
Abstract:
In order to analyze the fire resistance performance of hollow-core slab integrated floor specimen with link slab, the numerical model of hollow-core slab integrated floor specimen under constant load heating is established by finite element method, and the results are compared and verified with the test results. Based on the verified finite element model, the effects of various factors on the fire resistance performance of hollow-core slab integrated floor are analyzed, such as load level, hollow-core geometry size, the yield strength of cast-in-place floor steel mesh and the thickness of the compressible layer at hollow-core slab end. The results show that the simulation results of the failure mode, temperature field distribution and floor deflection change of the specimen are in good agreement with the test results. Continuous destruction occurs on the ribs of hollow-core slab adjacent to the link slab. The influence of failure phenomena on subsequent temperature and deformation can be well simulated by birth-death element method. The link slab structure is a weak part of hollow-core slab integrated floor, which is not conducive to the fire protection of the whole structure. With the increase of the load level, the fire resistance of the specimen decreases significantly, and the junction between the link slab and the hollow-core slab of the specimen and the central area of the cast-in-place slab are damaged. The change of hollow-core size, the decrease of steel mesh strength and the increase of compressible layer thickness decrease the fire resistance of hollow-core slab integrated floor.

参考文献/References:

[1] DOTREPPE J C,FRANSSEN J M.Precast hollow core slabs in fire: Numerical simulations and experimental tests[C]//Proceedings of SiF’04:Third International Structures in Fire Workshop.Ottawa:IRC press,2004:219-232.
[2] CHANG J,BUCHANAN A H,DHAKAL R P,et al.Hollow-core concrete slabs exposed to fire[J].Fire and Materials:An International Journal,2008,32(6):321-331.DOI:10.1002/fam.970.
[3] CHANG J J,MOSS P J,DHAKAL R P,et al.Effect of aspect ratio on fire resistance of hollow core concrete floors[J].Fire Technology,2010,46(1):201-216.DOI:10.1007/s10694-009-0087-7.
[4] 许清风,韩重庆,李向民,等.不同持荷水平下预应力混凝土空心板耐火极限试验研究[J].建筑结构学报,2013,34(3):20-27.DOI:10.14006/j.jzjgxb.2013.03.017.
[5] 韩重庆,许清风,李梦南,等.受约束预应力混凝土空心板整浇楼面耐火极限试验研究[J].建筑结构学报,2018,39(5):52-62.DOI:10.14006/j.jzjgxb.2018.05.007.
[6] AGUADO J V,ESPINOS A,HOSPITALER A,et al.Influence of reinforcement arrangement in flexural fire behavior of hollow core slabs[J].Fire Safety Journal,2012,53:72-84.DOI:10.1016/j.firesaf.2012.06.015.
[7] FELLINGER J,STARK J,WALRAVEN J,et al.Shear and anchorage behaviour of fire exposed hollow core slabs[J].Heron,2005,50(4):279-301.
[8] LINDSAY R,MANDER J B,BULL D K.Experiments on the seismic performance of hollow-core floor systems in precast concrete buildings[C]//13th World Conference on Earthquake Engineering.Vancouver:BC Press,2004:219-232.
[9] MATTHEWS J.Hollow-core floor slab performance following a severe earthquake[D].Christchurch:University of Canterbury,2004.
[10] STANDARD ASSOCIATION OF NEW ZEALAND.NZS 3101: 2006 Concrete structures standard[S].Wellington:Standard Association of New Zealand,2006.
[11] 陈振龙,韩重庆,许清风,等.底面受火预应力混凝土空心板耐火性能的有限元分析[J].防灾减灾工程学报,2016,36(3):478-485.DOI:10.13409/j.cnki.jdpme.2016.03.024.
[12] PECENKO R,HOZJAN T,PLANINC I,et al.A computational model for prestressed concrete hollow-core slab under natural fire[J].International Journal of Concrete Structures and Materials,2019,13(1):1-17.DOI:10.1186/s40069-019-0373-9.
[13] CHEN Lingzhu,HAN Chongqing,XU Qingfeng,et al.Postfire performance of prestressed concrete hollow-core floor systems with edge beams[J].Journal of Structural Engineering,2020,146(12):04020262.DOI:10.1061/(ASCE)ST.1943-541X.0002845.
[14] EUROPEAN COMMITTEE FOR STANDARDIZATION.EN 1992-1-2: 2004 Eurocode 2: Design of concrete structures: Part 1-2: General rules-structural fire design[S].Brussels:European Committee for Standardization,2004.
[15] ELLOBODY E,BAILEY C G.Modelling of unbonded posttensioned concrete slabs under fire conditions[J].Fire Safety Joumal,2009,44(2):159-167.DOI:10.1016/j.firesaf.2008.05.007.
[16] LIE T T.A method of to predict the fire resistance of circular concrete filled hollow steel columns[J].Journal of Fire Protection Engineering,1990,2(4):111-126.DOI:10.1177/104239159000200402.
[17] EUROPEAN COMMITTEE FOR STANDARDIZATION.EN 1995-1-2: 2004 Eurocode 5: Design of timber structures: Part 1-1: General-common rules and rules for buildings[S].Brussels:European Committee for Standardization,2004.
[18] EUROPEAN COMMITTEE FOR STANDARDIZATION.EN 1993-1-2: 2005 Eurocode 3: Design of steel structures: Part 1-2: General rules structural fire design[S].Brussels:European Committee for Standardization,2005.
[19] INTERNATIONAL ORGANIZATION OF STANDARDIZATION.ISO 834-1: Fire-resistance tests-elements of building construction: Part 1: General requirements[S].Geneva:International Organization of Standardization,1999.
[20] 郑文忠,门凯,王英.预应力混凝土结构抗火研究进展[J].建筑结构学报,2011,32(12):52-61.DOI:10.14006/j.jzjgxb.2011.12.008.
[21] 过镇海.钢筋混凝土原理[M].北京:清华大学出版社,2013.

备注/Memo

备注/Memo:
收稿日期: 2022-04-24
通信作者: 罗漪(1976-),女,教授,博士,博士生导师,主要从事既有结构性能评价及结构防灾减灾的研究.E-mail:luoyi@hqu.edu.cn.
基金项目: 国家自然科学基金面上资助项目(51878302, 52078225)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2022-09-20