[1]林金亮,彭侠夫.AH-IUKF融合算法下Ni-MH动力电池的SOC估计[J].华侨大学学报(自然科学版),2022,43(3):386-391.[doi:10.11830/ISSN.1000-5013.202111029]
 LIN Jinliang,PENG Xiafu.SOC Estimation of Ni-MH Power Battery Using AH-IUKF Fusion Algorithms[J].Journal of Huaqiao University(Natural Science),2022,43(3):386-391.[doi:10.11830/ISSN.1000-5013.202111029]
点击复制

AH-IUKF融合算法下Ni-MH动力电池的SOC估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第3期
页码:
386-391
栏目:
出版日期:
2022-05-10

文章信息/Info

Title:
SOC Estimation of Ni-MH Power Battery Using AH-IUKF Fusion Algorithms
文章编号:
1000-5013(2022)03-0386-06
作者:
林金亮12 彭侠夫1
1. 厦门大学 航天航空学院, 福建 厦门 361102; 2. 闽西职业技术学院 信息与制造学院, 福建 龙岩 364021
Author(s):
LIN Jinliang 12 PENG Xiafu1
1. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China; 2. Department of Information and Manufacturing, Minxi Vocational and Technical College, Longyan 364021, China
关键词:
Ni-MH动力电池 AH-IUKF融合算法 判定策略 估计误差
Keywords:
Ni-MH power battery AH-IUKF fusion algorithm decision strategy estimation error
分类号:
TM912.1;TP301.6
DOI:
10.11830/ISSN.1000-5013.202111029
文献标志码:
A
摘要:
针对Ni-MH动力电池系统非线性的特点,提出一种Thevenin电路改进后的状态模型.根据动力池电流变化显著的特征,采用融合改进后UKF(IUKF)算法和安时(AH)算法的AH-IUKF融合算法,对动力电池荷电状态(SOC)进行估计,并对AH-IUKF融合算法在SOC预测中的收敛速度、估计精度和复杂度进行分析和比较.结果表明:AH-IUKF融合算法不仅复杂度低、精度高,而且能实现Ni-MH动力电池SOC的快速估计,在各种工况下估计误差可平稳在1%~3%范围内,解决了动力电池SOC实时在线估计误差较大和计算复杂的问题.
Abstract:
For the non-linear characteristics of Ni-MH power battery system, an improved state model of Thevenin circuit is proposed. According to the characteristics of significant changes in power pool current, the AH-IUKF fusion algorithm of improved unscented kalmanfilter(IUKF)algorithm and amperohour(AH)algorithm are used to estimate the power battery state of change(SOC)in the power battery. The convergence speed, estimation accuracy and complexity of AH-IUKF fusion algorithm in SOC prediction are analyzed and compared. The results show that the AH-IUKF fusion algorithm not only has low complexity and high precision, but also can realize Ni-MH power battery SOC rapid estimation. The estimation error can be stable in the range of 1%-3% under various operating conditions, which solves the problems of larger estimation error and complex calculation under real-time online condiction of power battery SOC.

参考文献/References:

[1] 李家月,贠海涛,徐钦赐,等.基于扩展卡尔曼滤波的镍氢电池SOC估计[J].内燃机与配件,2020(1):203-204.DOI:10.19475/j.cnki.issn1674-957x.2020.01.106.
[2] XU Yaolin,MULDER F M.Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance[J].International Journal of Hydrogen Energy,2021,46(37):19542-19553.DOI:10.1016/J.IJHYDENE.2021.03.073.
[3] 张筱瑜,朱建新,印凯,等.基于二阶RC模型的HEV氢镍电池在线SOC估算研究[J].电源技术,2018,42(7):1021-1023.DOI:10.3969/j.issn.1002-087X.2018.07.030.
[4] CHEN Xiang,CHU Aihua,LI Dan,et al.Development of the cycling life model of Ni-MH power batteries for hybrid electric vehicles based on real-world operating conditions [J].Journal of Energy Storage,2021,34(2):20-27.DOI:10.1016/j.est.2020.101999.
[5] 王丽君,李萌.电动汽车用镍氢电池剩余电量估计方法研究[J].现代电子技术,2015,38(13):149-151,155.DOI:10.16652/j.issn.1004-373x.2015.13.008.
[6] 骆秀江,张兵,黄细霞,等.基于SVM的锂电池SOC估算[J].电源技术,2016,40(2):287-290.DOI:10.3969/j.issn.1002-087X.2016.02.016.
[7] 汪伟,贝绍轶,汪永志,等.混合动力镍氢电池荷电状态估计[J].中国农机化学报,2016(4):166-169.DOI:10.13733/j.jcam.issn.2095-5553.2016.04.038.
[8] 邱晨曦.采用自适应滤波的电池荷电状态估算方法[J].宁德师范学院学报(自然科学版),2019,31(4):359-363.DOI:10.15911/j.cnki.35-1311/n.2019.04.007.
[9] 孙丽贝,屈薇薇.基于EKF修正算法的锂电池SOC估算[J].蓄电池,2018,55(3):107-111.DOI:10.16679/j.cnki.21-1121.2018.03.002.
[10] 罗世昌,杨进.基于迭代卡尔曼粒子滤波器的锂电池SOC估算算法研究[J].工业控制计算机,2019,32(2):104-106.DOI:10.3969/j.issn.1001-182X.2019.02.046.
[11] 张武,孙士山,张家福.基于自适应无迹卡尔曼滤波的动力电池SOC估计[J].电源技术,2021,45(1):14-17.DOI:10.3969/j.issn.1002-087X.2021.01.004.
[12] 刘芳,马杰,苏卫星,等.基于模型参数在线辨识技术的SOC估算方法[J].东北大学学报(自然科学版),2020,41(11):1543-1549.DOI:10.12068/j.issn.1005-3026.2020.11.004.
[13] 高铭琨,徐海亮,吴明铂.基于等效电路模型的动力电池SOC估计方法综述[J].电气工程学报,2021,16(1):90-102.DOI:10.11985/2021.01.013.
[14] 张骞,李勇峰,郭昊,等.镍氢动力电池建模仿真研究[J].河南科技学院学报,2017,45(1):71-78.DOI:10.3969/j.issn.1008-7516.2017.01.014.
[15] 侍壮飞,玄东吉,李广诚,等.改进的UKF算法估算锂离子电池SOC[J].电池,2019,49(2):105-108.DOI:10.19535/j.1001-1579.2019.02.005.
[16] 谈发明,王琪.基于改进无迹卡尔曼滤波算法的动力电池SOC估计模型[J].汽车技术,2019(3):18-24.DOI:10.19620/j.cnki.1000-3703.20180446.

备注/Memo

备注/Memo:
收稿日期: 2021-11-09
通信作者: 林金亮(1979-),男,副教授,主要从事自动化与嵌入式系统的研究.E-mail:123222371@qq.com.
基金项目: 国家自然科学基金资助项目(61703356, 61305117); 福建省教育厅科研课题资金资助项目(JAT210903); 福建省龙岩市科技计划重点项目(2018LYF8016)
更新日期/Last Update: 2022-05-20