参考文献/References:
[1] 李旭.基于典型日出力特性分析的光伏电站功率预测研究[D].北京:华北电力大学,2016.DOI:10.7666/d.Y3114962.
[2] 李松威.基于神经网络的光伏发电功率预测研究[D].沈阳:沈阳工程学院,2017.
[3] 郑凯文,杨超.基于迭代决策树(GBDT)短期负荷预测研究[J].贵州电力技术,2017,20(2):82-84.DOI:10.19317/j.cnki.1008-083x.2017.02.019.
[4] DE GIORGI M G,CONGEDO P M,MALVONI M.Photovoltaic power forecasting using statistical methods: Impact of weather data[J].IET Science Measurement and Technology,2014,8(3):90-97.DOI:10.1049/IET-SMT.2013.0135.
[5] AHMAD M W,MOURSHED M,REZGUI Y.Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression[J].Energy,2018,164:465-474.DOI:10.1016/j.energy.2018.08.207.
[6] 姜恩宇,季亮,夏能弘,等.基于支持向量机的光伏发电功率预测[J].上海电力学院学报,2015,31(6):511-513,524 DOI:10.3969/j.issn.1006-4729.2015.06.002.
[7] 张雨金,周杭霞.Stacking-SVM的短期光伏发电功率预测[J].中国计量大学学报,2018,29(2):121-127.DOI:10.3969/j.issn.2096-2835.2018.02.002.
[8] JIN Lianghai,,XIONG Caiquan,LIU Hong.Improved bilateral filter for suppressing mixed noise in color images[J].Digital Signal Processing,2012,22(6):903-912.DOI:10.1016/j.dsp.2012.06.012.
[9] DU Nan,DAI Hanjun,TRIVEDI R,et al.Recurrent marked temporal point processes: Embedding event history to vector[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:1555-1564.DOI:10.1145/2939672.2939875.
[10] GONZáLEZ-HIDALGO M,MASSANET S,MIR A,et al.Improving salt and pepper noise removal using a fuzzy mathematical morphology-based filter[J].Applied Soft Computing,2018,63:167-180.DOI:10.1016/j.asoc.2017.11.030.
[11] 张春露,白艳萍.基于TensorFlow的LSTM模型在太原空气质量AQI指数预测中的应用[J].重庆理工大学学报(自然科学),2018,32(8):137-141.DOI:10.3969/j.issn.1674-8425(z).2018.08.021
[12] 赵淑芳,董小雨.基于改进的LSTM深度神经网络语音识别研究[J].郑州大学学报(工学版),2018,39(5):63-67.DOI:10.13705/j.issn.1671-6833.2018.02.004
[13] 陈卓,孙龙祥.基于深度学习LSTM网络的短期电力负荷预测方法[J].电子技术设计与应用,2018,01(001):39-41.DOI:10.3969/j.issn.1000-0755.2018.01.011.
[14] 李飞,高晓光,万开方.基于动态Gibbs采样的RBM训练算法研究[J].自动化学报,2016,42(6):931-942.DOI:10.16383/j.aas.2016.c150645.
[15] YUN Luo.An islanding detection method for photovoltaic power generation system using fluctuation characteristic of PCC harmonic voltage[J].Advanced Materials Research,2014,998/999:574-577.DOI:10.4028/www.scientific.net/AMR.998-999.574.
[16] 耿博,高贞彦,白恒远,等.结合相似日GA-BP神经网络的光伏发电预测[J].电力系统及其自动化学报,2017,29(6):118-123.DOI:10.3969/j.issn.1003-8930.2017.06.019.
[17] 贾俊平,何晓群,金勇进.统计学[M].7版.北京:中国人民大学出版社,2018.
[18] 孔祥玉,郑锋,鄂志君,等.基于深度信念网络的短期负荷预测方法[J].电力系统自动化,2018,42(5):133-139.DOI:10.7500/AEPS20170826002
[19] 林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018:193-196.