[1]刘慧俊,李风雷.太阳能增效的复叠式空气源热泵系统能量分析与及分析[J].华侨大学学报(自然科学版),2022,43(2):160-167.[doi:10.11830/ISSN.1000-5013.202102009]
 LIU Huijun,LI Fenglei.Energy Analysis and Exergy Analysis of Solar Energy Enhanced Cascade Air-Source Heat Pump System[J].Journal of Huaqiao University(Natural Science),2022,43(2):160-167.[doi:10.11830/ISSN.1000-5013.202102009]
点击复制

太阳能增效的复叠式空气源热泵系统能量分析与及分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第2期
页码:
160-167
栏目:
出版日期:
2022-03-08

文章信息/Info

Title:
Energy Analysis and Exergy Analysis of Solar Energy Enhanced Cascade Air-Source Heat Pump System
文章编号:
1000-5013(2022)02-0160-08
作者:
刘慧俊 李风雷
太原理工大学 土木工程学院, 山西 太原 030024
Author(s):
LIU Huijun LI Fenglei
College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
太阳能 空气源热泵 并联 能量分析 分析
Keywords:
solar energy air-source heat pump parallel connection energy analysis exergy analysis
分类号:
TK519
DOI:
10.11830/ISSN.1000-5013.202102009
文献标志码:
A
摘要:
为了提高空气源热泵的效率和稳定性,提出一种太阳能增效的复叠式空气源热泵系统,建立系统的能量模型和模型,以R134a为制冷剂进行计算分析.结果表明:随着中间冷凝温度的升高,系统机械性能系数先增大后减小,当中间冷凝温度为38 ℃时,系统机械性能系数达到最优值;随着中间冷凝温度的升高,效率先增大后减小,当中间冷凝温度为22 ℃时,效率达到最优值;系统机械性能系数、制热量、损失随着蒸发温度的升高而增大;随着太阳辐射照度的增大,系统机械性能系数、效率及制热量均有明显提升;系统中损失最大的部件为集热发生器,提高集热效率、采用合理的运行参数是提高系统效率的关键.
Abstract:
In order to improve the efficiency and stability of the air-source heat pump, a solar energy enhanced cascade air-source heat pump system is proposed, the energy model and exergy model of the system are established, and R134a is used as the cryogen for calculation and analysis. The results show that with the increase of the intermediate condensation temperature, the system mechanical performance coefficient first increases and then decreases, when the intermediate condensation temperature is 38 ℃, the system mechanical performance coefficient reaches the optimal value. With the increase of intermediate condensation temperature, the exergy efficiency first increases and then decreases, when the intermediate condensation temperature is 22 ℃, the exergy efficiency reaches the optimal value. The system mechanical performance coefficient, heating capacity and exergy destruction increase with the increase of evaporation temperature. With the increase of solar irradiance, the system mechanical performance coefficient, exergy efficiency and heating capacity of the system are significantly improved. The most exergy destruction component in the system is the heat collector, improving the heat collection efficiency and adopting reasonable operating parameters are the key to improve the exergy efficiency of the system.

参考文献/References:

[1] 万磊.太阳能-空气复合热源双级压缩CO2热泵热水器系统特性研究[D].郑州:中原工学院,2020.DOI:10.27774/d.cnki.gzygx.2020.000100.
[2] 黎珍,田琦,董旭.太原地区太阳能耦合空气源热泵一体化热水系统性能分析[J].华侨大学学报(自然科学版),2017,38(5):670-675.DOI:10.11830/issn.1000-5013.201612014.
[3] CHEN Jiaheng,YU Jianlin.Energy and exergy analysis of a new direct-expansion solar assisted vapor injection heat pump cycle with subcooler for water heater[J].Solar Energy,2018,171:613-620.DOI:10.1016/j.solener.2018.07.019.
[4] LI Fenglei,CHANG Zhao,LI Xinchang,et al.Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle[J].Energy,2018,165:419-431.DOI:10.1016/j.energy.2018.09.173.
[5] 王肖龙.太阳能-热泵热水系统控制策略研究与应用[D].杭州:杭州电子科技大学,2020.DOI:10.27075/d.cnki.ghzdc.2020.000563.
[6] 王洪利,张率华,阚德民.基于R1234yf和R134a制冷剂的太阳能-空气源复合热泵性能对比[J].节能,2018,37(1):54-59.DOI:10.3969/j.issn.1004-7948.2018.01.012.
[7] 郭春梅,许卫龙,王宇,等.广东地区太阳能-空气源热泵复合系统供暖供生活热水实验研究[J].热科学与技术,2020,19(2):177-184.DOI:10.13738/j.issn.1671-8097.018089.
[8] WU Jianghong,XIAN Ting,LIU Xuan.All-weather characteristic studies of a direct expansion solar integrated air source heat pump system based on PCMs[J].Solar Energy,2019,191:34-45.DOI:10.1016/j.solener.2019.08.057.
[9] 刘杰,万鹏,王亚妮,等.太阳能-空气源热泵联合供热系统的应用分析[J].区域供热,2019(6):121-129.DOI:10.16641/j.cnki.cn11-3241/tk.2019.06.018.
[10] CAI Jingyong,ZHANG Feng,JI Jie.Comparative analysis of solar-air dual source heat pump system with different heat source configurations[J].Renewable Energy,2020,150:191-203.DOI:10.1016/j.renene.2019.12.128.
[11] LIU Zhijian,WANG Qiaomei,WU Di,et al.Operating performance of a solar/air-dual source heat pump system under various refrigerant flow rates and distributions[J].Applied Thermal Engineering,2020,178:115631.DOI:10.1016/j.applthermaleng.2020.115631.
[12] 陈忠梅,王林,马爱华,等.太阳能-空气源双压缩热泵系统制热特性的影响因素研究[J].低温与超导,2020,48(8):50-55.DOI:10.16711/j.1001-7100.2020.08.010.
[13] 苏树强,肖洪海,刘迟.太阳能联合复叠热泵系统在寒冷地区的应用研究与分析[J].建设科技,2019(393):28-31.DOI:10.16116/j.cnki.jskj.2019.19.004.
[14] 郭瑞,李风雷.太阳能喷射增效的中高温空气源热泵系统性能分析[J].华侨大学学报(自然科学版),2019,40(6):763-770.DOI:10.11830/issn.1000-5013.201902038.
[15] YAN Gang,BAI Tao,YU Jianlin.Energy and exergy efficiency analysis of solar driven ejector compres-sor heat pump cycle[J].Solar Energy,2016,125:243-255.DOI:10.1016/j.solener.2015.12.021.
[16] MEGDOULI K,TASHTOUSH B M,NAHDI E,et al.Performance analysis of a combined vapor compression cycle and ejector cycle for refrigeration cogeneration[J].International Journal of Refrigeration,2017,74:515-525.DOI:10.1016/j.ijrefrig.2016.12.003.

相似文献/References:

[1]黎珍,田琦,董旭.太原地区太阳能耦合空气源热泵一体化热水系统性能分析[J].华侨大学学报(自然科学版),2017,38(5):670.[doi:10.11830/ISSN.1000-5013.201612014]
 LI Zhen,TIAN Qi,DONG Xu.Performance Analysis of Solar Energy Coupling With Air Source Heat Pump Integration Hot Water System in Taiyuan Area[J].Journal of Huaqiao University(Natural Science),2017,38(2):670.[doi:10.11830/ISSN.1000-5013.201612014]
[2]李宗北,田琦,董旭,等.空气源热泵换热器与岗亭壁体一体化供暖性能[J].华侨大学学报(自然科学版),2018,39(4):569.[doi:10.11830/ISSN.1000-5013.201804065]
 LI Zongbei,TIAN Qi,DONG Xu,et al.Research on Heating Performance of Booth With Air-Source Heat Pump Heat Exchanger and Pavilion Wall Integrated[J].Journal of Huaqiao University(Natural Science),2018,39(2):569.[doi:10.11830/ISSN.1000-5013.201804065]
[3]郭瑞,李风雷.太阳能喷射增效的中高温空气源热泵系统性能分析[J].华侨大学学报(自然科学版),2019,40(6):763.[doi:10.11830/ISSN.1000-5013.201902038]
 GUO Rui,LI Fenglei.Analysis on Performance of Medium-to-High Temperature Air-Source Heat Pump System With Solar Injection Synergy[J].Journal of Huaqiao University(Natural Science),2019,40(2):763.[doi:10.11830/ISSN.1000-5013.201902038]

备注/Memo

备注/Memo:
收稿日期: 2021-02-04
通信作者: 李风雷(1967-),男,教授,博士,主要从事空调制冷和可再生能源利用技术的研究.E-mail:fengleili@126.com.
基金项目: 国家国际科技合作项目(2013DFA61580); 山西省科技攻关项目(20140313006-6); 山西省重点研发计划项目(201803D31036)
更新日期/Last Update: 2022-03-20