[1]李伟达,叶靓玲,郑力新,等.面向扶梯不安全行为的改进型深度学习检测算法[J].华侨大学学报(自然科学版),2022,43(1):119-126.[doi:10.11830/ISSN.1000-5013.202105059]
 LI Weida,YE Liangling,ZHENG Lixin,et al.Improved Deep Learning Detection Algorithm for Unsafe Escalator Behavior[J].Journal of Huaqiao University(Natural Science),2022,43(1):119-126.[doi:10.11830/ISSN.1000-5013.202105059]
点击复制

面向扶梯不安全行为的改进型深度学习检测算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第1期
页码:
119-126
栏目:
出版日期:
2022-01-09

文章信息/Info

Title:
Improved Deep Learning Detection Algorithm for Unsafe Escalator Behavior
文章编号:
1000-5013(2022)01-0119-08
作者:
李伟达12 叶靓玲12 郑力新12 朱建清12 曾远跃3 林俊杰3
1. 华侨大学 工学院, 福建 泉州 362021;2. 华侨大学 工业智能化与系统福建省高校工程研究中心, 福建 泉州 362021;3. 福建省特种设备检验研究院 泉州分院, 福建 泉州 362021
Author(s):
LI Weida12 YE Liangling12 ZHENG Lixin12ZHU Jianqing12 ZHENG Yuanyue3 LIN Junjie3
1. College of Engineering, Huaqiao University, Quanzhou 362021, China; 2. Industrial Intelligence and System Fujian University Engineering Research Center, Huaqiao University, Quanzhou 362021, China; 3. Quanzhou Branch of Special Equipment Inspection Research Institute, Quanzhou 362021, China
关键词:
扶梯 不安全行为 目标检测 YOLOv5s CBAM模块 Ghost卷积模块
Keywords:
escalator unsafe behavior object detection YOLOv5s CBAM module Ghost convolution module
分类号:
TP391.41;TU229
DOI:
10.11830/ISSN.1000-5013.202105059
文献标志码:
A
摘要:
以YOLOv5s网络模型为基础,引入注意力机制CBAM模块,基于Ghost卷积模块重构网络模型的卷积操作,提出一种面向扶梯不安全行为的改进型深度学习检测算法.然后,在自主收集的扶梯不安全行为数据集上对其进行训练评估.结果表明,所提算法在检测精度有所提高的同时,大幅减少了检测所需的参数量和计算量.
Abstract:
An improved deep learning detection algorithm for unsafe escalator behavior was proposed. The algorithm is based on the YOLOv5s network model, introduces the attention mechanism CBAM module, and reconstructs the convolution operation of the network model based on the Ghost convolution module. It is trained and evaluated on the self-collected escalator unsafe behavior data set. The results show that the proposed algorithm has improved the detection accuracy while greatly reducing the amount of parameters and calculation required for detection.

参考文献/References:

[1] 杨冠宝.基于全景视觉的自动扶梯节能及智能监控系统[D].杭州:浙江工业大学,2011.DOI:10.7666/d.y1921130.
[2] FUSE T,KAMIYA K.Statistical anomaly detection in human dynamics monitoring using a hierarchical dirichlet process hidden Markov model[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(11):3083-3092.DOI:10.1109/TITS.2017.2674684.
[3] 田联房,吴啟超,杜启亮,et al.基于人体骨架序列的手扶电梯乘客异常行为识别[J].华南理工大学学报(自然科学版),2019,47(4):10-19.DOI:10.12141/j.issn.1000-565X.180186.
[4] 吉训生,滕彬.基于深度神经网络的扶梯异常行为检测[J].激光与光电子学进展,2020,57(6):132-141.DOI:10.3788/lop57.061010.
[5] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas: IEEE Press,2016:779-788.DOI:10.1109/CVPR.2016.91.
[6] REDMON J,FARHADI A.YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu: IEEE Press,2017:6517-6525.DOI:10.1109/CVPR.2017.690.
[7] REDMON J,FARHADI A.YOLOv3: An incremental improvement[EB/OL].[2018-04-08] .https://arxiv.org/abs/1804.02767.
[8] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4: Optimal speed and accuracy of object detection[EB/OL].[2020-04-23] .https://arxiv.org/abs/2004.10934.
[9] LIU Wei,ANGUELOV D,ERHAN D,et al.SSD: Single shot MultiBox detector[C]//European Conference on Computer Vision.Cham: Springer International Publishing,2016:21-37.DOI:10.1007/978-3-319-46448-0_2.
[10] GIRSHICK R,DONAHUE J,DARRELL T,et al.Region-based convolutional networks for accurate object detection and segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(1):142-158.DOI:10.1109/TPAMI.2015.2437384.
[11] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet: A new backbone that can enhance learning capability of CNN[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Seattle: IEEE Press,2020:1571-1580.DOI:10.1109/CVPRW50498.2020.00203.
[12] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu: IEEE Press,2017:936-944.DOI:10.1109/CVPR.2017.106.
[13] LIU Shu,QI Lu,QIN Haifang,et al.Path aggregation network for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City: IEEE Press,2018:8759-8768.DOI:10.1109/CVPR.2018.00913.
[14] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.DOI:10.1109/TPAMI.2015.2389824.
[15] WOO S,PARK J,LEE J Y,et al.CBAM: Convolutional block attention module[C]//Computer Vision:European Conference on Computer Vision.Cham:Springer International Publishing,2018:3-19.DOI:10.1007/978-3-030-01234-2_1.
[16] HAN Kai,WANG Yunhe,TIAN Qi,et al.GhostNet: More features from cheap operations[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle: IEEE Press,2020:1577-1586.DOI:10.1109/CVPR42600.2020.00165.
[17] HE Yihui,ZHANG Xiangyu,SUN Jian.Channel pruning for accelerating very deep neural networks[C]//IEEE International Conference on Computer Vision(ICCV).Venice: IEEE Press,2017:1398-1406.DOI:10.1109/ICCV.2017.155.
[18] JUNG S,SON Changyong,LEE S,et al.Learning to quantize deep networks by optimizing quantization intervals with task loss[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach: IEEE Press,2019:4345-4354.DOI:10.1109/CVPR.2019.00448.
[19] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).San Diego: IEEE Press,2005:886-893.DOI:10.1109/CVPR.2005.177.
[20] TIAN Zhi,SHEN Chunhua,CHEN Hao,et al.FCOS: Fully convolutional one-stage object detection[C]//IEEE/CVF International Conference on Computer Vision(ICCV).Seoul: IEEE Press,2019:9626-9635.DOI:10.1109/ICCV.2019.00972.
[21] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.DOI:10.1109/TPAMI.2018.2858826.
[22] 仉长崎,管业鹏.基于动态粒子流场的视频异常行为自动识别[J].光电子激光,2015,26(12):2375-2380.DOI:10.16136/j.joel.2015.12.0563.

相似文献/References:

[1]祁神军,成家磊,黄芹芹,等.安全态度、安全能力、不安全动机对建筑工人不安全行为的发生机理[J].华侨大学学报(自然科学版),2018,39(5):669.[doi:10.11830/ISSN.1000-5013.201803013]
 QI Shenjun,CHENG Jialei,HUANG Qinqin,et al.Occurrence Mechanism of Safety Attitude, Safety Capability and Unsafety Motivation to Unsafe Behavior for Construction Workers[J].Journal of Huaqiao University(Natural Science),2018,39(1):669.[doi:10.11830/ISSN.1000-5013.201803013]
[2]姚明亮,祁神军,张云波.敌对心理对建筑工人不安全行为的影响[J].华侨大学学报(自然科学版),2019,40(5):606.[doi:10.11830/ISSN.1000-5013.201903031]
 YAO Mingliang,QI Shenjun,ZHANG Yunbo.Influence of Hostile Psychology on Unsafe Behavior of Construction Workers[J].Journal of Huaqiao University(Natural Science),2019,40(1):606.[doi:10.11830/ISSN.1000-5013.201903031]
[3]姚明亮,祁神军,张云波,等.管理安全干预对建筑工人不安全行为的影响及对策[J].华侨大学学报(自然科学版),2020,41(5):605.[doi:10.11830/ISSN.1000-5013.201911016]
 YAO Mingliang,QI Shenjun,ZHANG Yunbo,et al.Research on Influence of Management Safety Intervention on Unsafe Behavior of Construction Workers and Countermeasures[J].Journal of Huaqiao University(Natural Science),2020,41(1):605.[doi:10.11830/ISSN.1000-5013.201911016]
[4]牛达钰,祁神军,姚明亮,等.强迫思维与强迫行为对建筑工人不安全行为的影响[J].华侨大学学报(自然科学版),2020,41(6):752.[doi:10.11830/ISSN.1000-5013.202003016]
 NIU Dayu,QI Shenjun,YAO Mingliang,et al.Influence of Obsessinal Thinking and Obsessina Behavior onUnsafe Behaviors of Construction Workers[J].Journal of Huaqiao University(Natural Science),2020,41(1):752.[doi:10.11830/ISSN.1000-5013.202003016]
[5]陈梅,祁神军,陈榕,等.建筑工人偏执心理因子对不安全行为的影响[J].华侨大学学报(自然科学版),2021,42(1):62.[doi:10.11830/ISSN.1000-5013.202003018]
 CHEN Mei,QI Shenjun,CHEN Rong,et al.Influence of Paranoid Psychological Factor on Unsafe Behavior of Construction Workers[J].Journal of Huaqiao University(Natural Science),2021,42(1):62.[doi:10.11830/ISSN.1000-5013.202003018]
[6]邱梦娟,祁神军,张云波,等.非正式群体凝聚力和沟通对建筑工人不安全行为的影响[J].华侨大学学报(自然科学版),2021,42(2):182.[doi:10.11830/ISSN.1000-5013.202006040]
 QIU Mengjuan,QI Shenjun,ZHANG Yunbo,et al.Influence of Informal Group Cohesion and Communication on Unsafe Behaviors of Construction Workers[J].Journal of Huaqiao University(Natural Science),2021,42(1):182.[doi:10.11830/ISSN.1000-5013.202006040]

备注/Memo

备注/Memo:
收稿日期: 2021-05-23
通信作者: 郑力新(1967-),男,教授,博士,主要从事光电检测与智能计算的研究.E-mail:zlxgxy@hqu.edu.cn.
基金项目: 国家自然科学基金面上资助项目(61976098); 福建省泉州市高层次人才创新创业项目(2020C042R); 福建省科技计划项目(2020Y0039)
更新日期/Last Update: 2022-01-20