参考文献/References:
[1] 顾朝林,熊江波.简论城市边缘区研究[J].地理研究,1989,8(3):95-101.DOI:10.11821/yj1989030012.
[2] PRYOR R J.Defining the rural-urban fringe[J].Social Forces,1968,47(2):202-215.DOI:10.1093/sf/47.2.202.
[3] 彭建,马晶,袁媛.城市边缘带识别研究进展与展望[J].地理科学进展,2014,33(8):1068-1077.DOI:10.11820/dlkxjz.2014.08.007.
[4] FRIEDBERGER M.The rural-urban fringe in the late twentieth century[J].Agricultural History,2000,74(2):502-514.DOI:10.2307/3744868.
[5] ZHAO Pengjun.Too complex to be managed? New trends in peri-urbanisation and its planning in Beijing[J].Cities,2013,30:68-76.DOI:10.1016/j.cities.2011.12.008.
[6] MA Ting,ZHOU Yuke,WANG Yingjie,et al.Diverse relationships between Suomi-NPP VIIRS night-time light and multi-scale socioeconomic activity[J].Remote Sensing Letters,2014,5(7):652-661.DOI:10.1080/2150704X.2014.953263.
[7] SMALL C,ELVIDGE C D,BALK D,et al.Spatial scaling of stable night lights[J].Remote Sensing of Environment,2011,115:269-280.DOI:10.1016/j.rse.2010.08.021.
[8] 王秀兰,李雪瑞,冯仲科.基于TM 影像的北京城市边缘带范围界定方法研究[J].遥感信息,2010(4):100-104.DOI:10.3969/j.issn.1000-3177.2010.04.019.
[9] 钱建平,周勇,杨信廷.基于遥感和信息熵的城乡结合部范围界定: 以荆州市为例[J].长江流域资源与环境,2007,16(4):451-455.DOI:10.3969/j.issn.1004-8227.2007.04.010.
[10] PENG Jian,ZHAO Shiquan,LIU Yanxu,et al.Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China[J].Environmental Modelling and Software,2016,83:286-302.DOI:10.1016/j.envsoft.2016.06.007.
[11] 马晶,李全,应玮.基于小波变换的武汉市城乡边缘带识别[J].武汉大学学报(信息科学版),2016,41(2):235-241.DOI:10.13203/j.whugis20140053.
[12] 张志刚,张安明,郭欢欢.基于DMSP/OLS夜间灯光数据的城乡结合部空间识别研究: 以重庆市主城区为例[J].地理与地理信息科学,2016,32(6):37-42.DOI:10.3969/j.issn.1672-0504.2016.06.007.
[13] 刘星南,吴志峰,骆仁波,等.基于多源数据和深度学习的城市边缘区判定[J].地理研究,2020,39(2):243-256.DOI:10.11821/dlyj020181085.
[14] 王海鹰,张新长,康停军,等.基于多准则判断的城市边缘区界定及其特征[J].自然资源学报,2011,26(4):703-714.DOI:10.11849/zrzyxb.2011.04.016.
[15] FENG Zhao,PENG Jian,WU Jiansheng.Using DMSP/OLS nighttime light data and K-means method to identify urban-rural fringe of megacities[J].Habitat International,2020,103:102227.DOI:10.1016/j.habitatint.2020.102227.
[16] GAO Yang,FENG Zhe,WANG Yang,et al.Clustering urban multifunctional landscapes using the self-organizing feature map neural network model[J].Journal of Urban Planning and Development,2014,140(2):29-37.DOI:10.1061/(ASCE)UP.1943-5444.0000170.
[17] 胡秋凤,陈娟,戴文远,等.快速城镇化下旅游海岛景观格局梯度分析: 以福建省平潭岛为例[J].福建师范大学学报(自然科学版),2019,35(2):109-116.DOI:10.12046/j.issn.1000-5277.2019.02.016.
[18] 龚亚西,程珊珊,季翔.生态安全格局视角下的徐州海绵城市建设[J].福建师范大学学报(自然科学版),2020,36(3):79-89.DOI:10.12046/j.issn.1000-5277.2020.03.010.
[19] GONG Peng,LI Xuecao,WANG Jie,et al.Annual maps of global artificial impervious area(GAIA)between 1985 and 2018[J].Remote Sensing of Environment,2020,236:111510.DOI:10.1016/j.rse.2019.111510.
[20] LEYK S,UHL J H,BALK D,et al.Assessing the accuracy of multi-temporal built-up land layers across rural-urban trajectories in the United States[J].Remote Sensing of Environment,2018,204:898-917.DOI:10.1016/j.rse.2017.08.035.
[21] XU Tao,MA Ting,ZHOU Chenghu,et al.Characterizing spatio-temporal dynamics of urbanization in China using time series of DMSP/OLS night light data[J].Remote Sensing,2014,6(8):7708-7731.DOI:10.3390/rs6087708.
[22] DING Shuo,CHANG Xiaoheng,WU Qinghui.Approximation performance of BP neural networks improved by heuristic approach[J].Applied Mechanics and Materials,2013,411/412/413/414:1952-1955.DOI:10.4028/www.scientific.net/AMM.411-414.1952.
[23] FOODY G M.Applications of the self-organizing featuremap neural network in community data analysis[J].Ecological Modelling,1999,120(2/3):97-107.DOI:10.1016/S0304-3800(99)00094-0.
[24] KOHONEN T.Essentials of the self-organizing map[J].Neural Networks,2013,37:52-65.DOI:10.1016/j.neunet.2012.09.018.