[1]李军,宋永雄,周舟.自动驾驶车辆的变步长路径跟踪控制[J].华侨大学学报(自然科学版),2022,43(1):14-20.[doi:10.11830/ISSN.1000-5013.202103045]
 LI Jun,SONG Yongxiong,ZHOU Zhou.Variable-Step Size Path Tracking Control of Autonomous Vehicles[J].Journal of Huaqiao University(Natural Science),2022,43(1):14-20.[doi:10.11830/ISSN.1000-5013.202103045]
点击复制

自动驾驶车辆的变步长路径跟踪控制()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第1期
页码:
14-20
栏目:
出版日期:
2022-01-09

文章信息/Info

Title:
Variable-Step Size Path Tracking Control of Autonomous Vehicles
文章编号:
1000-5013(2022)01-0014-07
作者:
李军12 宋永雄12 周舟3
1. 重庆交通大学 机电与车辆工程学院, 重庆 400074;2. 重庆交通大学 重庆市轨道交通车辆系统集成与控制重点实验室, 重庆 400074;3. 中国通用技术集团, 北京 100055
Author(s):
LI Jun12 SONG Yongxiong12 ZHOU Zhou3
1. College of Mechanical and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Chongqing Key Laboratory of Rail Transit Vehicle System Integration and Control, Chongqing Jiaotong University, Chongqing 400074, China; 3. China General Technology Group, Beijing 100055, China
关键词:
路径跟踪 变步长 模型预测控制器 稳定性
Keywords:
path tracking variable-step size model predictive controller stability
分类号:
U461
DOI:
10.11830/ISSN.1000-5013.202103045
文献标志码:
A
摘要:
为提高自动驾驶车辆路径跟踪控制的稳定性并保证实时性,设计变步长模型预测控制器.通过变步长对预测时域进行分级,引入道路曲率及侧偏角约束,采用CVXGEN进行优化求解.通过Carsim和Matlab/Simulink联合仿真,对文中方法进行验证.结果表明:变步长模型预测控制器既能保证较好的跟踪效果,又能确保车辆行驶的稳定性.
Abstract:
In order to improve the stability of automatic driving vehicle path tracking control and ensure real-time performance, a variable-step size model prediction controller was designed. The prediction time domain was classified by variable-step size, the road curvature and the constraints of sideslip angle were introduced, and the optimization solution was carried out by CVXGEN. The method was verified by the joint simulation of CarSim and Matlab/Simulink. The results show that variable-step size model prediction controller can not only guarantee better tracking effect, but also ensure the stability of vehicle driving.

参考文献/References:

[1] 李耀华,刘洋,冯乾隆,等.基于最优预瞄和模型预测的智能商用车路径跟踪控制[J].汽车安全与节能学报,2020,11(4):462-469.DOI:10.3969/j.issn.1674-8484.2020.04.005.
[2] 陈慧岩,陈舒平,龚建伟.智能汽车横向控制方法研究综述[J].兵工学报,2017,38(6):1203-1214.DOI:10.3969/j.issn.1000-1093.2017.06.021.
[3] 杭鹏,陈辛波,张榜,等.四轮独立转向-独立驱动电动车主动避障路径规划与跟踪控制[J].汽车工程,2019,41(2):170-176.DOI:10.19562/j.chinasae.qcgc.2019.02.008.
[4] 白国星,刘丽,孟宇,等.基于非线性模型预测控制的移动机器人实时路径跟踪[J].农业机械学报,2020,51(9):47-52,60.DOI:10.6041/j.issn.1000-1298.2020.09.006.
[5] 李军,唐爽,周伟.考虑车辆稳定性的模型预测路径跟踪方法[J].华侨大学学报(自然科学版),2019,40(5):574-579.DOI:10.11830/ISSN.1000-5013.201904029.
[6] WANG Hengyang,LIU Biao,PING Xianyao,et al.Path tracking control for autonomous vehicles based on an improved MPC [J].IEEE Access,2019,7:161064-161073.DOI:10.1109/access.2019.2944894.
[7] 王志文,辛鹏,孙洪涛,等.基于收缩约束模型预测控制的无人车辆路径跟踪[J].控制与决策,2021,40(1):1-10.DOI:10.13195/j.kzyjc.2020.1239.
[8] 唐传茵,赵懿峰,赵亚峰,等.智能车辆轨迹跟踪控制方法研究[J].东北大学学报(自然科学版),2020,41(9):1297-1303.DOI:10.12068/j.issn.1005-3026.2020.09.014.
[9] 吴施鹏.基于模型预测的无人车路径跟踪优化控制[J].重庆理工大学学报(自然科学版),2020,34(12):36-44.DOI:10.3969 /j.issn.1674-8425(z).2020.12.005.
[10] SUN Chuanyang,ZHANG Xin,ZHOU Quan,et al.A Model predictive controller with switched tracking error for autonomous vehicle path tracking[J].IEEE Access,2019,7:53103-53114.DOI:10.1109/access.2019.2912094.
[11] 邹旭东,贾志强,张丽霞.智能车路径跟踪与稳定性的模型预测控制[J].济南大学学报(自然科学版),2021,35(4):315-321,328.DOI:10.13349/j.cnki.jdxbn.20210201.002.
[12] YAO Tian.A model predictive controller with longitudinal speed compensation for autonomous vehicle path tracking[J].Applied Sciences,2019,9(22):2-17.DOI:10.3390/app9224739.
[13] FUNKE J,BROWN M,ERLIEN S M,et al.Collision avoidance and stabilization for autonomous vehicles in emergency scenarios[J].IEEE Transactions on Control Systems Technology,2017,25(4):1204-1216.DOI:10.1109/tcst.2016.2599783.
[14] BROWN M,FUNKE J,ERLIEN S,et al.Safe driving envelopes for path tracking in autonomous vehicles [J].Control Engineering Practice,2017,61:307-316.DOI:10.1016/j.conengprac.2016.04.013.
[15] 刘凯,龚建伟,陈舒平,等.高速无人驾驶车辆最优运动规划与控制的动力学建模分析[J].机械工程学报,2018,54(14):141-151.DOI:10.3901/JME.2018.14.141.
[16] 郭超.基于凸优化的火箭垂直返回精确着陆轨迹在线优化[D].哈尔滨:哈尔滨工业大学,2020.

相似文献/References:

[1]王子玥,谢维波,李斌.变步长BLSTM集成学习股票预测[J].华侨大学学报(自然科学版),2019,40(2):269.[doi:10.11830/ISSN.1000-5013.201807050]
 WANG Ziyue,XIE Weibo,LI Bin.Variable Step BLSTM Ensemble Learning for Stock Prediction[J].Journal of Huaqiao University(Natural Science),2019,40(1):269.[doi:10.11830/ISSN.1000-5013.201807050]

备注/Memo

备注/Memo:
收稿日期: 2021-03-30
通信作者: 李军(1964-),男,教授,博士,主要从事节能与新能源汽车性能评价的研究.E-mail:cqleejun@163.com.
基金项目: 国家自然科学基金资助项目(51305472); 重庆市重点实验室项目(CSTC2015yfpt-zdsys30001); 重庆市研究生联合培养项目(JDLHPYJD2018003)
更新日期/Last Update: 2022-01-20