[1]谢水奋,孔伟强,王秋祥.Cu基材料电催化二氧化碳深度还原研究进展[J].华侨大学学报(自然科学版),2022,43(1):1-13.[doi:10.11830/ISSN.1000-5013.202109013]
 XIE Shuifen,KONG Weiqiang,WANG Qiuxiang.Research Progress of Copper-Based Materials for Electrocatalytic CO2 Deep Reduction[J].Journal of Huaqiao University(Natural Science),2022,43(1):1-13.[doi:10.11830/ISSN.1000-5013.202109013]
点击复制

Cu基材料电催化二氧化碳深度还原研究进展()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第1期
页码:
1-13
栏目:
出版日期:
2022-01-09

文章信息/Info

Title:
Research Progress of Copper-Based Materials for Electrocatalytic CO2 Deep Reduction
文章编号:
1000-5013(2022)01-0001-13
作者:
谢水奋1 孔伟强1 王秋祥2
1. 华侨大学 材料科学与工程学院, 福建 厦门 361021;2. 华侨大学 实验室与设备管理处, 福建 厦门 361021
Author(s):
XIE Shuifen1 KONG Weiqiang1 WANG Qiuxiang2
1. College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; 2. Laboratory and Equipment Management Department, Huaqiao University, Xiamen 361021, China
关键词:
二氧化碳还原 串联催化 Cu基催化剂 深度还原产物
Keywords:
CO2 reduction tandem catalysis Cu-based catalysts deep reduction products
分类号:
O646
DOI:
10.11830/ISSN.1000-5013.202109013
文献标志码:
A
摘要:
综述近年来Cu基材料电催化CO2还原(ECR)生成多碳产物的研究进展,着重介绍ECR反应机理、Cu基催化材料的各种设计策略及电解池系统优化,并展望未来该领域的发展方向.结果表明:Cu基催化剂的优化和设计能够有效降低*CO关键中间体产生及偶联的能垒,进而优化多碳产物的合成效率;原位检测技术时空分辨率的提升则有助于深入ECR认识反应机理,从而优化Cu基材料的设计合成.
Abstract:
The research progress of Cu-based materials for electrocatalytic CO2 reduction(ECR)to generate polycarbonate products is reviewed, with emphasis on the reaction mechanism of ECR, various design strategies of Cu-based catalytic materials and electrolytic cell system optimization, and the future development direction of this field. The results show that the optimization and design of Cu-based catalysts can effectively reduce the energy barriers for the production and coupling of key intermediates of *CO, and thus optimize the synthesis efficiency of polycarbonate products; the improvement of spatial and temporal resolution of in situ detection technology can help to deeply understand the reaction mechanism of ECR, and thus optimize the design and synthesis of Cu-based materials.

参考文献/References:

[1] 白晓芳,陈为,王白银,等.二氧化碳电化学还原的研究进展[J].物理化学学报,2017,33(12):2388-2403.DOI:10.3866/PKU.WHXB201706131.
[2] 赖洁,杨楠,袁健发,等.电化学催化还原二氧化碳研究进展[J].新能源进展,2019,7(5):429-435.DOI:10.3969/j.issn.2095-560X.2019.05.007.
[3] 乔世璋.纳米尺度富集效应促进二氧化碳电还原[J].物理化学学报,2020,36(11):15-16.DOI:10.3866/PKU.WHXB202004011.
[4] BELMECHERI S,LAVERGNE A.Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings[J].Dendrochronologia,2020,63:125748.DOI:10.1016/j.dendro.2020.125748.
[5] FRIEDLINGSTEIN P,ANDREW R M,ROGELJ J,et al.Persistent growth of CO2 emissions and implications for reaching climate targets[J].Nature Geoscience,2014,7:709-715.DOI:10.1038/Ngeo2248.
[6] GOEPPERT A,CZAUN M,PRAKASH G K S,et al.Air as the renewable carbon source of the future: An overview of CO2 capture from the atmosphere[J].Energy and Environmental Science,2012,5(7):7833-7853.DOI:10.1039/c2ee21586a.
[7] KARL T R,TRENBERTH K E.Modern global climate change[J].Science,2003,302(5651):1719-1723.DOI:10.1126/science.1090228.
[8] MAHLSTEIN I,KNUTTI R,SOLOMON S,et al.Early onset of significant local warming in low latitude countries[J].Environmental Research Letters,2011,6(3):034009.DOI:10.1088/1748-9326/6/3/034009.
[9] SUN Libo,REDDU V,FISHER A C,et al.Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts[J].Energy and Environmental Science,2020,13(2):374-403.DOI:10.1039/c9ee036 60a.
[10] MONTOYA J H,SEITZ L C,CHAKTHRANONT P,et al.Materials for solar fuels and chemicals[J].Nature Materials,2016,16:70-81.DOI:10.1038/nmat4778.
[11] HE Mingyuan,SUN Yuhan,HAN Buxing.Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling[J].Angewandte Chemie International Edition,2013,52(37):9620-9633.DOI:10.1002/anie.201209384.
[12] BUSHUYEV O S,DE LUNA P,DINH C T,et al.What should we make with CO2 and how can we make it?[J].Joule,2018,2(5):825-832.DOI:10.1016/j.joule.2017.09.003.
[13] APPEL A M,BERCAW J E,BOCARSLY A B,et al.Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J].Chemical Reviews,2013,113(8):6621-6658.DOI:10.1021/cr300463y.
[14] FURLER P,SCHEFFE J,GORBAR M,et al.Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system[J].Energy and Fuels,2012,26(11):7051-7059.DOI:10.1021/ef3013757.
[15] WU Jinghua,HUANG Yang,YE Wen,et al.CO2 reduction: From the electrochemical to photochemical approach[J].Advanced Science,2017,4(11):1700194.DOI:10.1002/advs.201700194.
[16] NIELSEN D U,HU Xinming,DAASBJERG K,et al.Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J].Nature Catalysis,2018,1:244-254.DOI:10.1038/s41929-018-0051-3.
[17] TACKETT B M,GOMEZ E,CHEN J G.Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes[J].Nature Catalysis,2019,2:381-386.DOI:10.1038/s41929-019-0284-9.
[18] VERMA S,LU S,KENIS P J A.Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J].Nature Energy,2019,4:466-474.DOI:10.1038/s41560-019-0374-6.
[19] HAN Na,DING Pan,HE Le,et al.Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate[J].Advanced Energy Materials,2019,10(11):1902338.DOI:10.1002/aenm.201902 338.
[20] TEETER T E,VAN RYSSELBERGHE P.Reduction of carbon dioxide on mercury cathodes[J].The Journal of Chemical Physics,1954,22(4):759-760.DOI:10.1063/1.1740178.
[21] HORI Y.Electrochemical CO2 reduction on metal electrodes[M].New York:Springer,2008.
[22] HUANG J E,LI Fengwang,OZDEN A,et al.CO2 electrolysis to multicarbon products in strong acid[J].Science,2021,372:1074-1078.DOI:10.1126/science.abg6582.
[23] WANG Pengtang,YANG Hao,XU Yong,et al.Synergized Cu/Pb core/shell electrocatalyst for high-efficiency CO2 reduction to C2+ liquids[J].ACS Nano,2021,15(1):1039-1047.DOI:10.1021/acsnano.0c07869.
[24] KUHL K P,CAVE E R,ABRAM D N,et al.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J].Energy and Environmental Science,2012,5(5):7050-7059.DOI:10.1039/c2ee21234j.
[25] WU Jingjie,MA Sichao,SUN Jing,et al.A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates[J].Nature Communications,2016,7:13869.DOI:10.1038/ncomms13869.
[26] TORELLI D A,FRANCIS S A,CROMPTON J C,et al.Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials[J].ACS Catalysis,2016,6(3):2100-2104.DOI:10.1021/acscatal.5b02888.
[27] PARIS A R,BOCARSLY A B.Ni-Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2 [J].ACS Catalysis,2017,7(10):6815-6820.DOI:10.1021/acscatal.7b02146.
[28] KARAPINAR D,CREISSEN C E,DE LA CRUZ J G R,et al.Electrochemical CO2 reduction to ethanol with copper-based catalysts[J].ACS Energy Letters,2021,6(2):694-706.DOI:10.1021/acsenergylett.0c02610.
[29] QIAO Jinli,LIU Yuyu,HONG Feng,et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J].Chemical Society Reviews,2014,43(2):631-675.DOI:10.1039/c3cs60323g.
[30] KORTLEVER R,SHEN Jing,SCHOUTEN K J,et al.Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J].The Journal of Physical Chemistry Letters,2015,6:4073-4082.DOI:10.1021/acs.jpclett.5b01559.
[31] GOTTLE A J,KOPER M T M.Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: Prediction of sequential vs. concerted pathways using DFT[J].Chemical Science,2017,8(1):458-465.DOI:10.1039/c6sc02984a.
[32] SCHOUTEN K J,QIN Z,PEREZ GALLENT E,et al.Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes[J].Journal of the American Chemical Society,2012,134(24):9864-9867.DOI:10.1021/ja302668n.
[33] SCHOUTEN K J P,KWON Y,VAN DER HAM C J M,et al.A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes[J].Chemical Science,2011,2(10):1902-1909.DOI:10.1039/c1sc00277e.
[34] VERDAGUER-CASADEVALL A,LI C W,JOHANSSON T P,et al.Probing the active surface sites for co reduction on oxide-derived copper electrocatalysts[J].Journal of the American Chemical Society,2015,137(31):9808-9811.DOI:10.1021/jacs.5b06227.
[35] LI Xiaodong,WANG Shumin,LI Li,et al.Progress and perspective for in situ studies of CO2 reduction[J].Journal of the American Chemical Society,2020,142(21):9567-9581.DOI:10.1021/jacs.0c02973.
[36] BIRDJA Y Y,PEREZ-GALLENT E,FIGUEIREDO M C,et al.Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J].Nature Energy,2019,4:732-745.DOI:10.1038/s41560-019-0450-y.
[37] FRIEBE P,BOGDANOFF P,ALONSO-VANTE N,et al.A real-time mass spectroscopy study of the(electro)chemical factors affecting CO2 reduction at copper[J].Journal of Catalysis,1997,168(2):374-385.DOI:10.1006/jcat.1997.1606.
[38] HUANG Jianfeng,MENSI M,OVEISI E,et al.Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers[J].Journal of the American Chemical Society,2019,141(6):2490-2499.DOI:10.1021/jacs.8b12381.
[39] JIA Henglei,YANG Yuanyuan,CHOW T H,et al.Symmetry-broken Au-Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction[J].Advanced Functional Materials,2021,31(27):2101255.DOI:10.1002/adfm.202101255.
[40] YANG Pengpeng,ZHANG Xiaolong,GAO Feiyue,et al.Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels[J].Journal of the American Chemical Society,2020,142(13):6400-6408.DOI:10.1021/jacs.0c01699.
[41] HENCKEL D A,COUNIHAN M J,HOLMES H E,et al.Potential dependence of the local pH in a CO2 reduction electrolyzer[J].ACS Catalysis,2020,11(1):255-263.DOI:10.1021/acscatal.0c04297.
[42] XING Zhuo,HU Lin,RIPATTI D S,et al.Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment[J].Nature Communications,2021,12:136.DOI:10.1038/s41467-020-20397-5.
[43] TODOROVA T K,SCHREIBER M W,FONTECAVE M.Mechanistic understanding of CO2 reduction reaction(CO2RR)toward multicarbon products by heterogeneous copper-based catalysts[J].ACS Catalysis,2020,10(3):1754-1768.DOI:10.1021/acscatal.9b04746.
[44] NITOPI S,BERTHEUSSEN E,SCOTT S B,et al.Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J].Chemical Reviews,2019,119(12):7610-7672.DOI:10.1021/acs.chemrev.8b00705.
[45] BAGGER A,JU Wen,VARELA A S,et al.Electrochemical CO2 reduction: A classification problem[J].ChemPhysChem,2017,18(22):3266-3273.DOI:10.1002/cphc.201700736.
[46] HORI Y,TAKAHASHI I,KOGA O,et al.Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J].Journal of Molecular Catalysis A:Chemical,2003,199(1/2):39-47.DOI:10.1016/S1381-1169(03)00016-5.
[47] MANTHIRAM K,BEBERWYCK B J,ALIVISATOS A P.Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst[J].Journal of the American Chemical Society,2014,136(38):13319-13325.DOI:10.1021/ja5065284.
[48] 王帅,王振,邱俊杰,等.零维、一维、二维无机纳米材料催化还原CO2研究进展[J].功能材料,2018,49(12):12071-12078.DOI:10.3969/j.issn.1001-9731.2018.12.010.
[49] SUEN N T,KONG Z R,HSU C S,et al.Morphology manipulation of copper nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide[J].ACS Catalysis,2019,9(6):5217-5222.DOI:10.1021/acscatal.9b00790.
[50] LOIUDICE A,LOBACCARO P,KAMALI E A,et al.Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction[J].Angewandte Chemie International Edition,2016,55(19):5789-5792.DOI:10.1002/anie.201601582.
[51] HANDOKO A D,ONG C W,HUANG Yun,et al.Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts[J].The Journal of Physical Chemistry C,2016,120(36):20058-20067.DOI:10.1021/acs.jpcc.6b07128.
[52] GROSSE P,GAO Dunfeng,SCHOLTEN F,et al.Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects[J].Angewandte Chemie International Edition,2018,57(21):6192-6197.DOI:10.1002/anie.201802083.
[53] DONGARE S,SINGH N,BHUNIA H.Nitrogen-doped graphene supported copper nanoparticles for electrochemical reduction of CO2[J].Journal of CO2 Utilization,2021,44:101382.DOI:10.1016/j.jcou.2020.101382.
[54] PHAN T H,BANJAC K,COMETTO F P,et al.Emergence of potential-controlled Cu-nanocuboids and graphene-covered Cu-nanocuboids under operando CO2 electroreduction[J].Nano Letters,2021,21(5):2059-2065.DOI:10.1021/acs.nanolett.0c04703.
[55] CHOI C,KWON S,CHENG Tao,et al.Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4[J].Nature Catalysis,2020,3:804-812.DOI:10.1038/s41929-020-00504-x.
[56] MA Wenchao,XIE Shunji,LIU Tongtong,et al.Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J].Nature Catalysis,2020,3:478-487.DOI:10.1038/s41929-020-0450-0.
[57] LI Minhan,MA Yuanyuan,CHEN Jun,et al.Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+[J].Angewandte Chemie International Edition,2021,60(20):11487-11493.DOI:10.1002/anie.202102606.
[58] BANERJEE S,HAN Xu,THOI V S.Modulating the electrode-electrolyte interface with cationic surfactants in carbon dioxide reduction[J].ACS Catalysis,2019,9(6):5631-5637.DOI:10.1021/acscatal.9b00449.
[59] LI Fengwang,LI Yuguang,WANG Ziyun,et al.Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces[J].Nature Catalysis,2019,3:75-82.DOI:10.1038/s41929-019-0383-7.
[60] Lü Ximeng,SHANG Longmei,ZHOU Si,et al.Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols[J].Advanced Energy Materials,2020,10(37):2001987.DOI:10.1002/aenm.202001987.
[61] MA S,SADAKIYO M,HEIMA M,et al.Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J].Journal of the American Chemical Society,2017,139(1):47-50.DOI:10.1021/jacs.6b10740.
[62] Lü Zhiheng,ZHU Shangqian,XU Lang,et al.Kinetically controlled synthesis of Pd-Cu janus nanocrystals with enriched surface structures and enhanced catalytic activities toward CO2 reduction[J].Journal of the American Chemical Society,2021,143(1):149-162.DOI:10.1021/jacs.0c05408.
[63] IYENGAR P,KOLB M J,PANKHURST J R,et al.Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu-Ag tandem catalysts[J].ACS Catalysis,2021,11(8):4456-4463.DOI:10.1021/acscatal.1c00420.
[64] XIONG Likun,ZHANG Xiang,YUAN Hao,et al.Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production[J].Angewandte Chemie International Edition,2021,60(5):2508-2518.DOI:10.1002/anie.202012631.
[65] 陈琼,王欢,李卓,等.纳米Cu电极的制备及其在电催化还原CO2反应中的应用[J].化工学报,2010,61(增刊1):38-42.
[66] 李冰玉,毛庆,赵健,等.二氧化碳电化学还原反应器的研究进展[J].化工进展,2019,38(11):4901-4910.DOI:10.16085/j.issn.1000-6613.2019-0383.
[67] MURATA A,HORI Y.Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J].Bulletin of the Chemical Society of Japan,1991,64(1):123-177.DOI:10.1246/bcsj.64.123.
[68] DINH C T,BURDYNY T,KIBRIA M G,et al.CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J].Science,2018,360:783-787.DOI:10.1126/science.aas9100.
[69] YANG Hengpan,LIN Qing,ZHANG Chao,et al.Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities[J].Nature Communications,2020,11:593.DOI:10.1038/s41467-020-14402-0.
[70] ZHANG Xiao,LI Jiachen,LI Yuanyao,et al.Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes[J].Journal of the American Chemical Society,2021,143(8):3245-3255.DOI:10.1021/jacs.0c13427.

备注/Memo

备注/Memo:
收稿日期: 2021-09-10
通信作者: 谢水奋(1984-),男,教授,博士,主要从事无机纳米材料在燃料电池、电解水制氢、CO2还原及环境治理等领域基础应用的研究.E-mail:sfxie@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(21771067, 22171093); 福建省自然科学基金资助项目(2017J06005); 福建省高校新世纪优秀人才支持计划(2018年度)
更新日期/Last Update: 2022-01-20