参考文献/References:
[1] 唐晓波,刘志源.金融领域文本序列标注与实体关系联合抽取研究[J].情报科学,2021,39(5):3-11.DOI:10.13833/j.issn.1007-7634.2021.05.001.
[2] 毛瑞彬,吕华揆,朱菁.上市公司公告篇章级信息抽取框架与实现[J].情报科学,2019,37(11):73-78,88.DOI:10.13833/j.issn.1007-7634.2019.11.012.
[3] 马奔,张璐.人工智能在金融领域的应用场景和现状分析[J].时代金融(上旬),2019(2):71-72.DOI:10.3969/j.issn.1672-8661(s).2019.02.031.
[4] 郑杜福,黄蔚,任祥辉.一种基于ERNIE的军事文本实体关系抽取模型[J].信息技术,2021(2):38-43.DOI:10.13274/j.cnki.hdzj.2021.02.007.
[5] 高翔,张金登,许潇,等.基于LSTM-CRF的军事动向文本实体识别方法[J].指挥信息系统与技术,2020,11(6):91-95.DOI:10.15908/j.cnki.cist.2020.06.017.
[6] KOCAMAN V,TALBY D.Biomedical named entity recognition at scale[C]//DEL BIMBO A,et al.International Conference on Pattern Recognition: Pattern Recognition.[S.l.]:Springer,2021:635-646.DOI:10.1007/978-3-030-68763-2_48.
[7] 刘宇瀚,刘常健,徐睿峰,等.结合字形特征与迭代学习的金融领域命名实体识别[J].中文信息学报,2020,34(11):74-83.DOI:10.3969/j.issn.1003-0077.2020.11.010.
[8] 蔡莉,王淑婷,刘俊晖,等.数据标注研究综述[J].软件学报,2020,31(2):302-320.DOI:10.13328/j.cnki.jos.005977.
[9] VINCZE V,SZARVAS G,FARKAS R,et al.The BioScope corpus:biomedical texts annotated for uncertainty,negation and their scopes[J].BMC bioinformatics,2008,9(11):1-9.DOI:10.1186/1471-2105-9-S11-S9.
[10] ZOU Bowei,ZHU Qiaoming,ZHOU Guodong.Negation and speculation identification in Chinese Language[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Beijing:Association for Computational Linguistics,2015:656-665.DOI:10.3115/v1/P15-1064.
[11] 周惠巍,杨欢,徐俊利,等.中文模糊限制信息范围语料库的研究与构建[J].中文信息学报,2017,31(3):77-85.
[12] 冯鸾鸾,李军辉,李培峰,等.面向国防科技领域的技术和术语语料库构建方法[J].中文信息学报,2020,34(8):41-50.DOI:10.3969/j.issn.1003-0077.2020.08.006.
[13] MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP.Singapore. Association for Computational Linguistics,2009:1003-1011.DOI:10.5555/1690219.1690287.
[14] RITTER A,CLARK S,ETZIONI O.Named entity recognition in tweets: An experimental study[C]//Proceedings of the Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing.Edinburgh:Association for Computational Linguistics,2011:1524–1534.
[15] HUANG Zhiheng,XU Wei,YU Kai.Bidirectional LSTM-CRF models for sequence tagging[J/OL].[2015-08-09] .Computer Science(Computation and Language),2015.https://arxiv.org/pdf/1508.01991v1.pdf.
[16] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al.Neural architectures for named entity recognition[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.San Diego: Association for Computational Linguistics,2016:260-270.DOI:10.18653/v1/N16-1030.
[17] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//31st Conference on Neural Information Processing Systems(NIPS 2017).Long Beach:[s.n.],2017:5998-6008.
[18] DEVLIN J,CHANG M-W,LEE K,et al.Bert: Pre-training of deep bidirectional transformers for language understanding[J/OL].(2018-10-11)[2019-05-04] .Computer Science(Computation and Language),2019.https://tooob.com/api/objs/read/noteid/28717995.
[19] CUI Yiming,CHE Wanxiang,LIU Ting,et al.Revisiting pre-trained models for Chinese natural language processing[C]//Findings of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics.2020:657-668.DOI:10.18653/v1/2020.findings-emnlp.58
[20] SUN Yu,WANG Shuohuan,LI Yukun,et al.ERNIE 2.0: A continual pre-training framework for language understanding[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(5):8968-8975.DOI:10.1609/aaai.v34i05.6428.
[21] LI Xiaoya,FENG Jingrong,MENG Yuxian,et al.A unified mrc framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics,2020:5849-5859.DOI:10.18653/v1/2020.acl-main.519.
[22] 高学攀,杜楚,吴金亮.基于BiLSTM-CRF的军事命名实体识别方法[J].无线电工程,2020,50(12):1050-1054.DOI:10.3969/j.issn.1003-3106.2020.12.007.