[1]刘典,杜震宇.土壤初始温度及地下水渗流对多供一回中心回水管换热器的影响[J].华侨大学学报(自然科学版),2021,42(6):772-783.[doi:10.11830/ISSN.1000-5013.202102033]
 LIU Dian,DU Zhenyu.Influence of Initial Soil Temperature and Groundwater Seepage on Several Supply Pipes and One Central Return Pipe Heat Exchanger[J].Journal of Huaqiao University(Natural Science),2021,42(6):772-783.[doi:10.11830/ISSN.1000-5013.202102033]
点击复制

土壤初始温度及地下水渗流对多供一回中心回水管换热器的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第6期
页码:
772-783
栏目:
出版日期:
2021-11-12

文章信息/Info

Title:
Influence of Initial Soil Temperature and Groundwater Seepage on Several Supply Pipes and One Central Return Pipe Heat Exchanger
文章编号:
1000-5013(2021)06-0772-12
作者:
刘典 杜震宇
太原理工大学 土木工程学院, 山西 太原 030024
Author(s):
LIU Dian DU Zhenyu
College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
分层土壤 多供一回中心回水管 地下水渗流方向 间歇运行
Keywords:
layered soil several supply pipes and one central return pipe groundwater seepage direction intermittent operation
分类号:
TK523
DOI:
10.11830/ISSN.1000-5013.202102033
文献标志码:
A
摘要:
为研究地下水渗流对多供一回中心回水管换热器与周围岩土体换热情况的影响,以黄土高原地区实际土壤环境为依托,采用DesignMoldeler软件建立多供一回中心回水管换热器及周围土壤的三维热渗耦合传热模型,利用Meshing软件对模型进行网格划分,并采用Fluent软件对其进行数值模拟.分析岩土体分层条件下,沿埋深方向变化的土壤初始温度、不同地下水渗流方向及间歇运行模式对多供一回中心回水管换热器换热的影响.研究结果表明:分层土壤初始温度不同对不同类型的多供一回中心回水管换热器影响较大,故不可忽略;不同地下水渗流方向对不同类型的多供一回中心回水管换热器影响不同,存在一个最佳渗流方向使得换热效率达到最高;间歇运行模式可提高热泵运行效率,减小埋管的设计长度,从而减少初投资.
Abstract:
In order to study the influence of groundwater seepage on the heat exchange between the several supply pipes and one central return pipe heat exchanger and surrounding rock and soil, a three-dimensional coupled thermo-seepage heat transfer model of several supply pipes and one central return pipe heat exchanger and surrounding soil was established by DesignMoldeler software, based on the actual soil environment in the Loess Plateau. The model was meshed by Meshing software, and numerically simulated by Fluent software. Under the condition of rock and soil stratification, the effects of soil initial temperature varying along the buried depth, different groundwater seepage directions and intermittent operation modes on the heat transfer of several supply pipes and one central return pipe heat exchanger were analyzed. The research results show that layered soil with different initial temperatures has a greater impact that can not be ignored. Different groundwater seepage directions have different influence on different types of several supply pipes and one central return pipe heat exchangers, there is an optimal seepage direction to maximize the heat transfer efficiency. The intermittent operation mode can improve operation efficiency of the heat pump, and can reduce the design length of the buried pipe, thereby reduce the initial investment.

参考文献/References:

[1] MA Z D,JIA G S,CUI X,et al.Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer[J].Applied Energy,2020,276(1):1-11.DOI:10.1016/j.apenergy.2020.115453.
[2] 刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社,2006.
[3] YOU Tian,WU Wen,SHI Wenxing,et al.An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions[J].Applied Energy,2016,177:515-536.DOI:10.1016/j.apenergy.2016.05.115.
[4] 杨棟.垂直双U型埋管换热器换热性能研究[D].长沙:长沙理工大学,2013.
[5] 彭远玲.基于岩土分层条件下渗流对竖直地埋管换热性能的影响[D].重庆:重庆大学,2019.
[6] 陈金华.竖直双U地埋管换热器分层换热模型研究[D].重庆:重庆大学,2015.
[7] 张琳琳,赵蕾,杨柳,等.分层土壤中竖直埋管换热器传热特性[J].化工学报,2015,12(66):4836-4842.DOI:10.11949/j.issn.0438-1157.20150818.
[8] 杜震宇.黄土高原寒冷地区地源热泵单U型地埋管换热器动态换热特性的试验与模拟研究[D].太原:太原理工大学,2014.
[9] 刘逸,陈培强.地下水渗流对地埋管换热器换热影响研究[J].制冷,2019,38(3):10-16.DOI:10.3969/J.ISSN.1005-9180.2019.03.002.
[10] 岳丽燕,黄贤龙,孟令军,等.地下水渗流地埋管换热影响研究[J].世界地质,2017,36(4):1291-1296.DOI:10.3969/j.issn.1004-5589.2017.04.0290.
[11] 王欣.地下水渗流方向对单U型埋管换热器换热特性影响的数值研究[D].太原:太原理工大学,2015.
[12] CHOI J C,PARK J,LEE S R,et al.Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays[J].Renewable Energy,2013,52:230-240.DOI:10.1016/j.renene.2012.10.0280.
[13] 张静,杜震宇.多供一回中心回水管竖直埋管换热器换热性能的数值模拟[J].太阳能学报,2018,49(8):2176-2182.
[14] 杨刚杰.地埋管换热器传热过程的数值模拟研究[D].北京:北京工业大学,2014.
[15] JI Bingbing,CHEN Jinping.Detailed explanation of ANSYS ICEM CFD meshing technology examples[M].Beijing:China Water Power Press,2012.
[16] 曾云帆.动态负荷对土壤源热泵系统性能影响的研究[D].太原:太原理工大学,2013.
[17] 陶文铨.数值传热学[D].西安:西安交通大学,2001.
[18] WANG Yao,WANG Songqing,HE Shijing.Simulation of temperature and moisture fields around a single borehole ground heat echanger: Effects of moisture migration and groundwater seepage[J].Journal of Thermal Analysis and Calorimetry,2019,1007(10):1-14.DOI:10.1007/s10973-019-09193-6.
[19] 王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
[20] 康龙.地源热泵U形埋管换热的数值模拟及优化研究[D].武汉:华中科技大学,2007.
[21] 陈旭,范蕊,龙惟定,等.竖直地埋管单位井深换热量影响因素回归分析[J].制冷学报,2010,31(2):11-16.DOI:10.3969/j.issn.0253-4339.2010.02.0110.
[22] 高青.地温规律及其可恢复特性增强传热研究[J].制冷学报,2003,24(3):38-41.DOI:10.3969/j.issn.0253-4339.2003.03.008.

备注/Memo

备注/Memo:
收稿日期: 2021-02-25
通信作者: 杜震宇(1964-),男,教授,博士,主要从事可再生能源利用的研究.E-mail:dsdd2004@163.com.
基金项目: 国家自然科学基金资助项目(51476108); 国家重点研发计划项目(2016YFE0133300-04)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2021-11-20