[1]杜进金,蔡奇鹏,苏世灼,等.短芯PHC管桩水泥土根植桩竖向承载力数值模拟[J].华侨大学学报(自然科学版),2021,42(6):740-747.[doi:10.11830/ISSN.1000-5013.202101034]
 DU Jinjin,CAI Qipeng,SU Shizhuo,et al.Numerical Simulation of Vertical Bearing Capacity of Cemented-Soil Pile Rooted With Short-Core PHC Pipe Pile[J].Journal of Huaqiao University(Natural Science),2021,42(6):740-747.[doi:10.11830/ISSN.1000-5013.202101034]
点击复制

短芯PHC管桩水泥土根植桩竖向承载力数值模拟()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第6期
页码:
740-747
栏目:
出版日期:
2021-11-12

文章信息/Info

Title:
Numerical Simulation of Vertical Bearing Capacity of Cemented-Soil Pile Rooted With Short-Core PHC Pipe Pile
文章编号:
1000-5013(2021)06-0740-08
作者:
杜进金12 蔡奇鹏12 苏世灼12 方舒新12 林浩12
1. 华侨大学 土木工程学院, 福建 厦门 3620212. 华侨大学 福建省隧道与城市地下空间工程技术研究中心, 福建 厦门 362021
Author(s):
DU Jinjin12 CAI Qipeng12 SU Shizhuo12FANG Shuxin12 LIN Hao12
1. Collage of Civil Engineering of Huaqiao University, Xiamen, 362021, China2. Fujian Research Center for Tunneling and Urban Underground Space Engineering, Huaqiao University, Xiamen, 362021, China
关键词:
短芯预应力高强度混凝土管桩 水泥土根植桩 侧摩阻力 竖向承载力 数值模拟
Keywords:
short-core prestressed high-strength concrete pipe piles cemented soil rooted piles lateral friction resistance vertical bearing capacity numerical simulation
分类号:
TU473.11
DOI:
10.11830/ISSN.1000-5013.202101034
文献标志码:
A
摘要:
为研究短芯预应力高强度混凝土(PHC)管桩水泥土根植桩的竖向荷载传递规律,结合现场案例展开数值模拟;分析各级荷载下管桩及水泥土桩身应力与侧壁摩阻力分布特征,研究根植桩的受荷规律和承载力影响因素.数值模拟结果表明:在管桩长度范围内,水泥土对管桩侧阻力的发挥做出了贡献,在管桩桩端处,荷载由管桩向水泥土传递,使得此处水泥土应力应变急剧增加;管桩桩端附近水泥土的侧向变形突增,增加了管桩-水泥土界面的摩擦强度,明显提高了管桩的侧摩阻力;管桩桩端附近水泥土塑性变形集中,是根植桩的一个薄弱环节.此外,水泥土粘聚力的增加能较为显著提高根植桩承载力,但水泥土的弹性模量及摩擦角对根植桩承载性能影响小.为充分发挥根植桩承载力,在进行设计时,宜使水泥土的粘聚力为250 kPa、摩擦角为40°、弹性模量为400 MPa.
Abstract:
In order to study the vertical load transfer of the cemented-soil pile rooted with short-core pre-stressed high-strength concrete(PHC)pipe pile, numerical simulation was carried out in combination with field case. The distribution characteristics of axial stress and lateral friction resistance of the pipe pile and cemented soil under various load steps were analyzed. The load-bearing and influencing factors of bearing capacity of rooted pile was studied. The numerical simulation results show that: In the length range of pipe pile, cemented soil contributes to the lateral resistance of pipe pile. At the end of pipe pile, the load is transferred rapidly from the pipe pile to cemented soil, resulting in a sharp increase in the stress and strain of cemented soil here. The lateral deformation of cemented soil near the end of pipe pile increases sharply, which increases the friction strength of the interface between pipe pile and cemented soil, and also increases obviously the lateral friction resistance of pipe pile. Plastic deformation is concentrated at the cemented soil near the end of pipe pile, resulting in a weak part of the rooted pile. The increase of cohesion of cemented soilcan significantly improves the bearing capacity of the rooted pile. However, the elastic modulus and friction angle of cemented soil have little effect on the bearing capacity of the rooted pile. In order to fully develop the bearing capacity of the rooted pile, the cohesive force of cemented soil 250 kPa, the friction angle 40° and the elastic modulus 400 MPa are suggested for design.

参考文献/References:

[1] 龚晓南,李向红.静力压桩挤土效应中的若干力学问题[J].工程力学,2000,17(4):7-12.DOI:10.3969/j.issn.1000-4750.2000.04.002.
[2] 钟建敏.预制桩沉桩挤土引起的桩基质量问题与处理[J].建筑结构,2017,47(增刊2):458-463.DOI:10.19701/j.jzjg.2017.s2.091.
[3] 雷华阳,李肖,陆培毅,等.管桩挤土效应的现场试验和数值模拟[J].岩土力学,2012,33(4):1006-1012.DOI:10.3969/j.issn.1000-7598.2012.04.007.
[4] 张东.单桩现场试验及桩端沉渣对单桩承载力的影响分析[D].北京:北京建筑大学,2019.
[5] 周庆,郑吉成,李君,等.钻孔灌注桩施工常见故障和处理对策[J].施工技术,2012,41(1):28-31,35.
[6] 李俊才,张永刚,邓亚光,等.管桩水泥土复合桩荷载传递规律研究[J].岩石力学与工程学报,2014,33(增刊1):3068-3076.
[7] 周佳锦.静钻根植竹节桩承载及沉降性能试验研究与有限元模拟[D].杭州:浙江大学,2016.
[8] 宋义仲,卜发东,程海涛,等.管桩水泥土复合基桩承载性能试验研究[J].工程质量,2012,30(5):12-16.DOI:10.3969/j.issn.1671-3702.2012.05.004.
[9] 宋义仲,马凤生,赵西久,等.填芯管桩水泥土复合基桩及施工方法: 101858079A[P].2010-10-13.
[10] 凌光容,安海玉,谢岱宗,等.劲性搅拌桩的试验研究[J].建筑结构学报,2001(2):92-96.DOI:10.3321/j.issn:1000-6869.2001.02.018.
[11] 刘汉龙,任连伟,郑浩,等.高喷插芯组合桩荷载传递机制足尺模型试验研究[J].岩土力学,2010,31(5):1395-1401.DOI:10.3969/j.issn.1000-7598.2010.05.008.
[12] 江苏兴鹏基础工程有限公司,江苏省建筑科学研究院有限公司.劲性复合桩技术规程: DGJ32/TJ 151-2013[S].南京:江苏科学技术出版社,2013.
[13] 中国建筑科学研究院,广东省建筑科学研究院,中冶建筑研究总院有限公司,等.建筑基桩检测技术规范: JGJ 106-2014[S].北京:中国建筑工业出版社,2014.
[14] 万通建设集团有限公司,昆明二建建设(集团)有限公司,江苏通州基础工程有限公司,等.劲性复合桩技术规程: JGJ/T 327-2014[S].北京:中国建筑工业出版社,2014.
[15] 陈育民,徐鼎平.FLAC/FLAC 3D基础与工程实例[M].2版.北京:中国水利水电出版社,2013.
[16] WU Jiujiang,LI Yan,CHENG Qiangong,et al.A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC 3D[J].Frontiers of Structural and Civil Engineering,2016,10(1):103-111.
[17] ZHOU Jiajin,GONG Xiaonan,WANG Kuihua,et al.Testing andmodeling the behavior of pre-bored grouting planted piles under compression and tension[J].Acta Geotechnica,2017,12(9):1061-1075.DOI:10.1007/s11440-017-0540-6.
[18] 赵明华.土力学与基础工程[M].2版.武汉:武汉理工大学出版社,2014.
[19] 太沙基 K.理论土力学[M].徐志英,译.北京:北京地质出版社,1960.
[20] ZHOU Jiajin,GONG Xiaonan,WANG Kuihua,et al.A model test on the behavior of a static drill rooted nodular pile under compression[J].Marine Georesources and Geotechnology,2016,34(3):293-301.DOI:10.1080/1064119X.2015.1012313.
[21] 张永刚.管桩水泥土复合桩承载性能影响因素分析[J].土工基础,2014,28(4):60-65.

备注/Memo

备注/Memo:
收稿日期: 2021-01-23
通信作者: 蔡奇鹏(1982-),男,教授,博士,博士生导师,主要从事岩土与隧道工程模型试验和数值模拟的研究.E-mail:cqp@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778249)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2021-11-20