[1]徐亚琳,胡海涛,钱长照,等.行人对人行桥三分力系数的影响[J].华侨大学学报(自然科学版),2021,42(5):611-618.[doi:10.11830/ISSN.1000-5013.202101011]
 XU Yalin,HU Haitao,QIAN Changzhao,et al.Influence of Pedestrian on Tri-Component Coefficients of Footbridge[J].Journal of Huaqiao University(Natural Science),2021,42(5):611-618.[doi:10.11830/ISSN.1000-5013.202101011]
点击复制

行人对人行桥三分力系数的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第5期
页码:
611-618
栏目:
出版日期:
2021-09-20

文章信息/Info

Title:
Influence of Pedestrian on Tri-Component Coefficients of Footbridge
文章编号:
1000-5013(2021)05-0611-08
作者:
徐亚琳12 胡海涛2 钱长照2 雷鹰1 陈昌萍12
1. 厦门大学 建筑与土木工程学院, 福建 厦门 361005;2. 厦门理工学院 风灾害与风工程福建省重点实验室, 福建 厦门 361024
Author(s):
XU Yalin12 HU Haitao2 QIAN Changzhao2 LEI Ying1 CHEN Changping12
1. College of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, China; 2. Fujian Key Laboratory of Wind Disasters and Wind Engineering, Xiamen University of Technology, Xiamen 361024, China
关键词:
非对称桥梁断面 行人密度 横向位置 风洞试验 计算流体力学(CFD)
Keywords:
asymmetric bridge section pedestrian density lateral position wind tunnel test computational fluid dynamics(CFD)
分类号:
U446.1
DOI:
10.11830/ISSN.1000-5013.202101011
文献标志码:
A
摘要:
以风洞试验方法为主、计算流体力学(CFD)方法为辅,研究不同角度风嘴入流、行人密度和行人横向排列位置条件下的人行桥主梁断面三分力系数的变化规律.结果表明:桥上行人的存在会改变截面周围气流的流态,从而对桥梁断面的静力三分力系数产生显著影响;风攻角在-12°~12°范围内,阻力系数均呈现先增加后减小趋势,负风攻角范围内行人密度是阻力系数变化的主导因素,而正风攻角范围内阻力系数变化受风攻角主导;当风攻角由-12°变化到12°时,小风嘴入流状态下的升力系数和扭矩系数整体逐渐减小,而大风嘴入流状态下的升力系数和扭矩系数整体呈现先增大后减小的趋势,随着行人由迎风侧移动到背风侧,阻力系数略微增大,升力系数显著减小,扭矩系数几乎不变.
Abstract:
Mainly by the wind tunnel test method, and assistanty by the computational fluid dynamics(CFD)method, the variation of the tri-component force coefficients with different wind fairing angles, pedestrian densities and arrangements of pedestrian lateral position is studied. The results show that the pedestrians on the bridge change the flow pattern of the airflow around the cross section, consequently influence significantly the tri-component coefficients of the bridge section. With the wind attack angle varying from -12° to 12°, the drag coefficient increases at first and then decreases. Pedestrian density is the main factor for negative wind attack angle, while the wind attack angle plays a dominant role in drag coefficient for positive wind attack angle. With the wind attack angle varying from -12° to 12°, the lift coefficient and torque coefficient gradually decrease under small wind fairing angle, while the lift coefficient and torque coefficient show a trend of first increasing and then decreasing under large wind fairing angle. As the pedestrian moves from the windward side to the leeward side, the drag coefficient increases slightly, the lift coefficient decreases significantly, and the torque coefficient is almost unchanged.

参考文献/References:

[1] 陈政清.桥梁风工程[M].北京:人民交通出版社,2005.
[2] GUO Jian,ZHU Minjun.Static aerodynamic force coefficients for an arch bridge girder with two cross sections[J].Wind Struct,2020,31(3):209-216.DOI:10.12989/was.2020.31.3.209.
[3] 王旭,袁波,陈耀,等.桥梁断面三分力系数的数值风洞研究[J].贵州大学学报(自然科学版),2017,34(2):128-133.DOI:10.15958/j.cnki.gdxbzrb.2017.02.26.
[4] 汪家继,樊健生,聂建国,等.大跨度桥梁箱梁的三分力系数识别研究[J].工程力学,2016,33(1):95-104.DOI:10.6052/j.issn.1000-4750.2014.06.0475.
[5] 刘昊苏,雷俊卿.大跨度双层桁架主梁三分力系数识别[J].浙江大学学报(工学版),2019,53(6):1092-1100.DOI:10.3785/j.issn.1008-973X.2019.06.008.
[6] ZHANG Tian,GUO Weiwei,DU Fei.Effect of windproof barrier on aerodynamic performance of vehicle bridge system[J].Procedia Engineering,2017,199:3083-3090.DOI:10.1016/j.proeng.2017.09.426.
[7] 白桦,马腾飞,杨鹏瑞,等.附属设施对近流线形桥梁三分力的雷诺数效应影响研究[J].振动工程学报,2019,32(2):340-349.DOI:10.16385/j.cnki.issn.1004-4523.2019.02.018.
[8] SHANG Jingmiao,ZHOU Qiang,LIAO Haili,et al.Numerical study of wake and aerodynamic forces on a twin-box bridge deck with different gap ratios[J].Wind Struct,2020,30(4):367-378.DOI:10.12989/was.2020.30.4.367.
[9] MA Cunming,DUAN Qingsong,LI Qiusheng,et al.Aerodynamic characteristics of a long-span cable-stayed bridge under construction[J].Engineering Structures,2019,184:232-246.DOI:10.1016/j.engstruct.2018.12.097.
[10] 樊书文,李永乐.风嘴形式对桥梁断面三分力系数影响的数值模拟[J].四川建筑,2018,38(3):163-165.DOI:10.3969/j.issn.1007-8983.2018.03.057.
[11] XU F Y,LI Binbin,CAI C S,et al.Experimental Investigations on aerostatic characteristics of bridge decks under various conditions[J].Journal of Bridge Engineering,2014,19(7):27-35.DOI:10.1061/(ASCE)BE.1943-5592.0000601.
[12] 杨赐.风与人群荷载共同作用下人行悬索桥的振动响应[D].西安:长安大学,2018.
[13] 吴桂楠.风-人-桥系统的步行参数与气动参数研究[D].西安:长安大学,2019.
[14] 李加武,宋特,林立华,等.变截面连续钢箱梁桥静气动性能研究[J].公路交通科技,2020,37(4):88-95.DOI:10.3969/j.issn.1002-0268.2020.04.012.
[15] 中华人民共和国交通运输部.公路桥梁抗风设计规范: JTG/T 3360-01-2018 [S].北京:人民交通出版社,2018.
[16] 葛耀君.桥梁风洞试验指南 [M].北京:人民交通出版社,2018.
[17] 林震云,李永乐,汪斌.基于CFD的大跨度邻近桥梁气动干扰效应分析[J].铁道建筑,2018,58(2):18-22.DOI:10.3969/j.issn.1003-1995.2018.02.05.
[18] BUTZ C,HEINEMEYER C,KEIL A,et al.Design of footbridges guideline: RFS2-CT-2007-00033[S].Berlin:[s.n.], 2008.
[19] National Research Council.HCM2010: Highway capacity manual[M].5版.Washington D C:National Academies Press,2010.
[20] 蒋廷球,韦楼.攻角变化下流线型桥梁断面三分力系数的数值模拟[J].中国西部科技,2011,10(10):15-16,25.DOI:10.3969/j.issn.1671-6396.2011.10.006.

备注/Memo

备注/Memo:
收稿日期: 2021-03-29
通信作者: 陈昌萍(1971-),男,教授,博士,博士生导师,主要从事桥梁风工程的研究.E-mail:cpchen@hnu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778551); 福建省厦门市科技计划项目(3502Z20161016)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2021-09-20