[1]赵树恩,胡洪银,景东印.AFS/DYC协调控制的分布式驱动电动汽车稳定性控制[J].华侨大学学报(自然科学版),2021,42(5):571-579.[doi:10.11830/ISSN.1000-5013.202010015]
 ZHAO Shuen,HU Hongyin,JING Dongyin.Stability Control of Distributed Drive Electric Vehicle Based on AFS/DYC Coordinated Control[J].Journal of Huaqiao University(Natural Science),2021,42(5):571-579.[doi:10.11830/ISSN.1000-5013.202010015]
点击复制

AFS/DYC协调控制的分布式驱动电动汽车稳定性控制()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第5期
页码:
571-579
栏目:
出版日期:
2021-09-20

文章信息/Info

Title:
Stability Control of Distributed Drive Electric Vehicle Based on AFS/DYC Coordinated Control
文章编号:
1000-5013(2021)05-0571-09
作者:
赵树恩1 胡洪银1 景东印2
1. 重庆交通大学 机电与车辆工程学院, 重庆 400074;2. 重庆宗申航空发动机制造有限公司, 重庆 400014
Author(s):
ZHAO Shuen1 HU Hongyin1 JING Dongyin2
1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Chongqing Zongshen Aviation Engine Manufacturing Limited Company, Chongqing 400014, China
关键词:
主动前轮转向 直接横摆力矩控制 滑模控制 模型预测控制 相平面法
Keywords:
active front steering direct yaw moment control sliding mode control model predictive control phase plane method
分类号:
U461.99
DOI:
10.11830/ISSN.1000-5013.202010015
文献标志码:
A
摘要:
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.
Abstract:
To improve the stability of the distributed drive electric vehicle during driving, a coordinated control strategy of active front steering(AFS)and direct yaw moment control(DYC)was proposed. In order to improve the steering ability of the vehicle during steady-state driving,a front-wheel active steering controller based on sliding mode control(SMC)was designed to correct the front-wheel angle in real time. As the control goal of keeping the vehicle working in the steady-state area, a vehicle stability controller based on model predictive control(MPC)was designed, and the wheel drive/braking torque was distributed in equal proportions according to the axle load ratio through the set distribution rules. The phase plane method was used as the decision basis for the weight adaptive assignment of each controller to realize the switching between the controllers. Under continuous steering conditions, the control algorithm was simulated and verified. The results show that: under the same input angle, the yaw stability of the vehicle under the controlled state is increased by 16%, and the driving state is improved compared with the uncontrolled vehicle.

参考文献/References:

[1] 余卓平,冯源,熊璐.分布式驱动电动汽车动力学控制发展现状综述[J].机械工程学报,2013,49(8):105-114.DOI:10.3901/JME.2013.08.105.
[2] 刘志强,刘广.分布式驱动电动汽车稳定性控制仿真与试验[J].汽车工程,2019,41(7):792-799.DOI:10.19562/j.chinasae.qcgc.2019.07.010.
[3] KATSUYAMA E.Decoupled 3D moment control using in-wheel motors[J].Vehicle System Dynamics,2012,51(1):18-31.DOI:10.1080/00423114.2012.708758.
[4] 林程,徐志峰,周逢军,等.分布式驱动电动汽车稳定性分层控制策略研究[J].北京理工大学学报,2015,35(5):490-493.DOI:10.15918/j.tbit1001-0645.2015.05.011.
[5] 张细政,郑亮.基于转矩协调分配的分布式驱动电动汽车稳定性控制[J].中国机械工程,2018,29(15):1780-1787.DOI:10.3969/j.issn.1004-132X.2018.15.003.
[6] 马晓军,王科淯,张征.多轮独立电驱动车辆横摆稳定性滑模控制研究[J].机械科学与技术,2021,40(3):442-447.DOI:10.13433/j.cnki.1003-8728.20200074.
[7] ZHANG Lin,CHEN Hong,HUANG Yanjun,et al.Model predictive control for integrated longitudinal and lateral stability of electric vehicles with in-wheel motors[J].IET Control Theory and Applications,2020,14(18):2741-2751.DOI:10.1049/iet-cta.2020.0122.
[8] 景东印.基于分层控制的分布式驱动电动汽车操纵稳定性研究[D].重庆:重庆交通大学,2019.
[9] METZLER M,TAVERNINI D,SORNIOTTI A,et al.Explicit nonlinear model predictive control for vehicle stability control[C]//Proceedings of the 9th International Munich Chassis Symposium.Munich:Springer Nature,2019:733-752.DOI:10.1007/978-3-658-22050-1_49.
[10] LI Bin,GOODARZI A,KHAJEPOUR A,et al.An optimal torque distribution control strategy for four-independent wheel drive electric vehicles[J].Vehicle System Dynamics,2015,53(8):1172-1189.DOI:10.1080/00423114.2015.1028414.
[11] LI Shoutao,LIU Hui,ZHAO Di,et al.Adaptive sliding mode control of lateral stability of four wheel hub electric vehicles[J].International Journal of Automotive Technology,2020,21(3):739-747.DOI:10.1007/s12239-020-0072-1.
[12] 张缓缓,李庆望,彭博,等.紧急避障工况下的分布式驱动电动汽车稳定性控制[J].汽车技术,2019(7):30-35.DOI:10.19620/j.cnki.1000-3703.20180954.
[13] 李军,方春杰,束海波.紧急制动工况下车辆的PI稳定性控制[J].华侨大学学报(自然科学版),2017,38(2):135-140.DOI:10.11830/ISSN.1000-5013.201702001.
[14] 冀杰,黄岩军,李云伍,等.面向车辆操纵稳定性的主动差速器模型预测控制[J].汽车工程,2018,40(2):206-213.DOI:10.19562/j.chinasae.qcgc.2018.02.014.
[15] 周磊,张向文.基于Dugoff轮胎模型的爆胎车辆运动学仿真[J].计算机仿真,2012,29(6):308-311.DOI:10.3969/j.issn.1006-9348.2012.06.078.
[16] DOUMIATI M,VICTORINO A,LECHNER D,et al.Observers for vehicle tyre/road forces estimation: Experimental validation[J].Vehicle System Dynamics,2010,48(11):1345-1378.DOI:10.1080/00423111003615204.
[17] 陈虹.模型预测控制[M].北京:科学出版社,2013.
[18] 韩雪雯,何锋,张永德,等.基于模糊控制的重型车辆侧倾稳定性分析[J].煤矿机械,2016,37(8):181-184.DOI:10.13436/j.mkjx.201608073.
[19] 杨康,王振臣,赵莎.基于滑模变结构控制的车辆稳定性研究[J].现代制造工程,2014(10):53-59.DOI:10.16731/j.cnki.1671-3133.2014.10.024.

备注/Memo

备注/Memo:
收稿日期: 2020-10-12
通信作者: 赵树恩(1972-),男,教授,博士,主要从事汽车主动安全技术的研究.E-mail:zse0916@163.com.
基金项目: 国家自然科学基金资助项目(52072054); 重庆市自然科学基金资助项目(cstc2018jcyjAX0422)
更新日期/Last Update: 2021-09-20