[1]吴莞姝,胡龙超,赵凯.特征房价空间分析及连续型深度置信网络预测[J].华侨大学学报(自然科学版),2021,42(4):537-546.[doi:10.11830/ISSN.1000-5013.202009029]
 WU Wanshu,HU Longchao,ZHAO Kai.Spatial Analysis of Characteristics Housing Price and Prediction With Continuous Deep Belief Neural Network[J].Journal of Huaqiao University(Natural Science),2021,42(4):537-546.[doi:10.11830/ISSN.1000-5013.202009029]
点击复制

特征房价空间分析及连续型深度置信网络预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第4期
页码:
537-546
栏目:
出版日期:
2021-07-20

文章信息/Info

Title:
Spatial Analysis of Characteristics Housing Price and Prediction With Continuous Deep Belief Neural Network
文章编号:
1000-5013(2021)04-0537-10
作者:
吴莞姝1 胡龙超2 赵凯2
1. 华侨大学 建筑学院, 福建 厦门 361021;2. 华侨大学 数量经济研究院, 福建 厦门 361021
Author(s):
WU Wanshu1 HU Longchao2 ZHAO Kai2
1. School of Architecture, Huaqiao University, Xiamen 361021, China; 2. Institute for Quantitative Economics, Huaqiao University, Xiamen 361021, China
关键词:
连续型深度置信网络 建筑特征 区位特征 邻里特征 空间自相关 上海市
Keywords:
continuous deep belief neural network architectural characteristics location characteristics neighborhood characteristics spatial autocorrelation Shanghai City
分类号:
TP18;F293.35
DOI:
10.11830/ISSN.1000-5013.202009029
文献标志码:
A
摘要:
以上海为研究区域,利用数据爬虫手段搜集、整理上海市二手房交易数据,通过空间自相关分析二手房交易价格的空间效应,并使用连续型深度置信网络对二手房交易价格进行分析预测.研究结果表明:上海市二手房交易价格在空间上具有显著的自相关效应,在上海市核心区域存在高-高集聚效应,在周边区域呈现低-低集聚效应,而在核心与周边交界地区存在高-低集聚和低-高集聚的负向空间效应;特征变量对价格偏高区域的二手房交易价格解释力度较小;除中心区域外,基于连续型深度置信网络的特征变量对上海市二手房交易价格预测能力良好.
Abstract:
Taking Shanghai City as the research area, data crawlers are used to collect and organize the second-hand housing transaction data, the spatial effect of second-hand house prices are analyzed through spatial autocorrelation, and the continuous deep belief neural networks are used to analyze and predict the second-hand housing prices. Research results show that the transaction price of second-hand housing in Shanghai City has a significant spatial autocorrelation effect. There is a high-high agglomeration effect in the core area of Shanghai City, and a low-low agglomeration effect in the surrounding areas. There are negative spatial effects of high-low aggregation and low-high aggregation at the junction of the core and surrounding areas. Characteristic variables have less power to explain the transaction prices of second-hand housing in areas with high prices. Except for the core areas, the characteristic variables based on the continuous deep belief neural network have a good ability to predict the transaction price of second-hand housing in Shanghai City.

参考文献/References:

[1] 刘建丰,于雪,彭俞超,等.房产税对宏观经济的影响效应研究[J].金融研究,2020(8):34-53.DOI:1002-7246(2020)08-0034-20.
[2] 冯苑.城市高房价会抑制居民劳动参与吗?[J].财经研究,2020,46(10):154-168.DOI:10.16538/j.cnki.jfe.20200518.401.
[3] 丛颖,杜泓钰,杨文静.公共服务资本化对房价影响的空间计量分析: 基于我国269个地级市的经验研究[J].财经问题研究,2020(7):69-77.DOI:10.19654/j.cnki.cjwtyj.2020.07.007.
[4] RIDKER R G,HENNING J A.The determinants of residential property values with special reference to air pollution[J].The Review of Economics and Statistics,1967,49(2):246-257.DOI:10.2307/1928231.
[5] XIAO Yixiong,CHEN XIANG,LI Qiang,et al.Exploring determinants of housing prices in Beijing: An enhanced hedonic regression with open access POI data[J].ISPRS International Journal of Geo-Information,2017,6(11):358-370.DOI:10.3390/ijgi6110358.
[6] 张骥.学区房溢价的再估计: 以北京市为例[J].经济问题探索,2017(8):57-63.
[7] 王芳,高晓路,颜秉秋.基于住宅价格的北京城市空间结构研究[J].地理科学进展,2014,33(10):1322-1331.DOI:10.11820/dlkxjz.2014.10.004.
[8] 沈体雁,于瀚辰,周麟,等.北京市二手住宅价格影响机制: 基于多尺度地理加权回归模型(MGWR)的研究[J].经济地理,2020,40(3):75-83.DOI:10.15957/j.cnki.jjdl.2020.03.009.
[9] LI Han,WEI Y D,WU Yangyi,et al.Analyzing housing prices in Shanghai with open data: Amenity, accessibility and urban structure[J].Cities,2019,91:165-179.DOI:10.1016/j.cities.2018.11.016.
[10] 申瑞娜,曹昶,樊重俊.基于主成分分析的支持向量机模型对上海房价的预测研究[J].数学的实践与认识,2013,43(23):11-16.DOI:10.3969/j.issn.1000-0984.2013.23.002.
[11] 刘琼芳.基于灰度GM(1,1)模型的福州市房价预测[J].福建金融管理干部学院学报,2018(1):44-50.DOI:1009-4768(2018)01-0044-07.
[12] 陈娜,唐晨旭,刘伟,等.周口市住宅商品房价格的分析与预测[J].数学的实践与认识,2019,49(19):291-299.
[13] 张智鹏,郑大庆.影响区域房价的客观因素挖掘分析[J].计算机应用与软件,2019,36(11):32-38,85.DOI:10.3969/j.issn.1000-386x.2019.11.006.
[14] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.DOI:10.1162/neco.2006.18.7.1527.
[15] DESELAERS T,HASAN S,BENDER O,et al.A deep learning approach to machine transliteration[C]//Proceedings of the 4th EACL Workshop on Statistical Machine Translation.Athens:Association for Computational Linguistics,2009:233-241.DOI:10.3115/1626431.1626476.
[16] SCHMIDHUBER J.Deep learning in neural networks: An overview[J].Neural Network,2015,61:85-117.DOI:10.1016/j.neunet.2014.09.003.
[17] LANGKVIST M,KARLSSO L,LOUTFI A.A review of unsupervised feature learning and deep learning for time-series modeling[J].Pattern Recognition Letters,2014,42:11-24.DOI:10.1016/j.patrec.2014.01.008.
[18] ZHANG Ren,SHEN Furao,ZHAO Jinxi.A model with fuzzy granulation and deep belief networks for exchange rate forecasting[C]//Proceedings of the 2014 International Joint Conference on Neural Networks.Beijing:IEEE Press,2014:366-373.DOI:10.1109/IJCNN.2014.6889448.
[19] CHEN H,MURRAY A F.Continuous restricted boltzmann machine with an implementable training algorithm[J].IEEE Proceedings-Vision Image Signal Process,2003,150(3):153-158.DOI:10.1049/ip-vis:20030362.
[20] HINTON G E.Training products of experts by minimizing contrastive divergence[J].Neural Computation,2002,14(8):1771-1800.DOI:10.1162/089976602760128018.
[21] SNOEK J,LAROCHELLE H,ADAMS R P.Practical bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.New York:Curran Associates Inc,2012:2960-2968.

备注/Memo

备注/Memo:
收稿日期: 2020-09-14
通信作者: 吴莞姝(1988-),女,讲师,博士,主要从事城市规划、大数据与GIS的研究.E-mail:wuwanshu131@163.com.
基金项目: 国家自然科学基金资助项目(51908229, 71603087); 福建省自然科学基金面上资助项目(2019J01063); 华侨大学中青年教师科技创新资助计划(ZQN-816)
更新日期/Last Update: 2021-07-20