参考文献/References:
[1] 刘建丰,于雪,彭俞超,等.房产税对宏观经济的影响效应研究[J].金融研究,2020(8):34-53.DOI:1002-7246(2020)08-0034-20.
[2] 冯苑.城市高房价会抑制居民劳动参与吗?[J].财经研究,2020,46(10):154-168.DOI:10.16538/j.cnki.jfe.20200518.401.
[3] 丛颖,杜泓钰,杨文静.公共服务资本化对房价影响的空间计量分析: 基于我国269个地级市的经验研究[J].财经问题研究,2020(7):69-77.DOI:10.19654/j.cnki.cjwtyj.2020.07.007.
[4] RIDKER R G,HENNING J A.The determinants of residential property values with special reference to air pollution[J].The Review of Economics and Statistics,1967,49(2):246-257.DOI:10.2307/1928231.
[5] XIAO Yixiong,CHEN XIANG,LI Qiang,et al.Exploring determinants of housing prices in Beijing: An enhanced hedonic regression with open access POI data[J].ISPRS International Journal of Geo-Information,2017,6(11):358-370.DOI:10.3390/ijgi6110358.
[6] 张骥.学区房溢价的再估计: 以北京市为例[J].经济问题探索,2017(8):57-63.
[7] 王芳,高晓路,颜秉秋.基于住宅价格的北京城市空间结构研究[J].地理科学进展,2014,33(10):1322-1331.DOI:10.11820/dlkxjz.2014.10.004.
[8] 沈体雁,于瀚辰,周麟,等.北京市二手住宅价格影响机制: 基于多尺度地理加权回归模型(MGWR)的研究[J].经济地理,2020,40(3):75-83.DOI:10.15957/j.cnki.jjdl.2020.03.009.
[9] LI Han,WEI Y D,WU Yangyi,et al.Analyzing housing prices in Shanghai with open data: Amenity, accessibility and urban structure[J].Cities,2019,91:165-179.DOI:10.1016/j.cities.2018.11.016.
[10] 申瑞娜,曹昶,樊重俊.基于主成分分析的支持向量机模型对上海房价的预测研究[J].数学的实践与认识,2013,43(23):11-16.DOI:10.3969/j.issn.1000-0984.2013.23.002.
[11] 刘琼芳.基于灰度GM(1,1)模型的福州市房价预测[J].福建金融管理干部学院学报,2018(1):44-50.DOI:1009-4768(2018)01-0044-07.
[12] 陈娜,唐晨旭,刘伟,等.周口市住宅商品房价格的分析与预测[J].数学的实践与认识,2019,49(19):291-299.
[13] 张智鹏,郑大庆.影响区域房价的客观因素挖掘分析[J].计算机应用与软件,2019,36(11):32-38,85.DOI:10.3969/j.issn.1000-386x.2019.11.006.
[14] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.DOI:10.1162/neco.2006.18.7.1527.
[15] DESELAERS T,HASAN S,BENDER O,et al.A deep learning approach to machine transliteration[C]//Proceedings of the 4th EACL Workshop on Statistical Machine Translation.Athens:Association for Computational Linguistics,2009:233-241.DOI:10.3115/1626431.1626476.
[16] SCHMIDHUBER J.Deep learning in neural networks: An overview[J].Neural Network,2015,61:85-117.DOI:10.1016/j.neunet.2014.09.003.
[17] LANGKVIST M,KARLSSO L,LOUTFI A.A review of unsupervised feature learning and deep learning for time-series modeling[J].Pattern Recognition Letters,2014,42:11-24.DOI:10.1016/j.patrec.2014.01.008.
[18] ZHANG Ren,SHEN Furao,ZHAO Jinxi.A model with fuzzy granulation and deep belief networks for exchange rate forecasting[C]//Proceedings of the 2014 International Joint Conference on Neural Networks.Beijing:IEEE Press,2014:366-373.DOI:10.1109/IJCNN.2014.6889448.
[19] CHEN H,MURRAY A F.Continuous restricted boltzmann machine with an implementable training algorithm[J].IEEE Proceedings-Vision Image Signal Process,2003,150(3):153-158.DOI:10.1049/ip-vis:20030362.
[20] HINTON G E.Training products of experts by minimizing contrastive divergence[J].Neural Computation,2002,14(8):1771-1800.DOI:10.1162/089976602760128018.
[21] SNOEK J,LAROCHELLE H,ADAMS R P.Practical bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.New York:Curran Associates Inc,2012:2960-2968.