[1]李军,钟鹏.OpenCV的车道线检测方法[J].华侨大学学报(自然科学版),2021,42(4):421-424.[doi:10.11830/ISSN.1000-5013.202009036]
 LI Jun,ZHONG Peng.Lane Line Detection Method Based on OpenCV[J].Journal of Huaqiao University(Natural Science),2021,42(4):421-424.[doi:10.11830/ISSN.1000-5013.202009036]
点击复制

OpenCV的车道线检测方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第4期
页码:
421-424
栏目:
出版日期:
2021-07-20

文章信息/Info

Title:
Lane Line Detection Method Based on OpenCV
文章编号:
1000-5013(2021)04-0421-04
作者:
李军 钟鹏
重庆交通大学 机电与车辆工程学院, 重庆 400074
Author(s):
LI Jun ZHONG Peng
School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
关键词:
车道线检测 Canny边缘检测 渐进概率Hough变换 双边滤波
Keywords:
lane line detection Canny edge detection progressive probability Hough transform bilateral filtering
分类号:
U491.5;TP391.41
DOI:
10.11830/ISSN.1000-5013.202009036
文献标志码:
A
摘要:
基于开源计算机视觉库(OpenCV),提出一种轻量级的车道线检测方法.首先,对输入的原始图像进行灰度化处理,紧接着使用双边滤波滤除噪声,大幅度保留原始图像的边缘信息;然后,用Canny边缘检测提取图像边缘;最后,使用速度更快的渐进概率Hough变换(PPHT)识别车道线.仿真结果表明:预期检测车道线的效果较好.
Abstract:
Based on the open source computer vision library(OpenCV), a lightweight lane line detection method was proposed. First, the input original image was grayed, and next the noise was filtered out with bilateral filtering to greatly preserve the edge information of the original image. Then,the method of Canny edge detection was used to extract the edge of the image. Finally, a faster progressive probability Hough transform(PPHT)was adopted to recognize lane lines. The simulation results show that the effect of expected lane detection is better.

参考文献/References:

[1] NAROTE S P,BHUJBAL P N,NAROTE A S,et al.A review of recent advances in lane detection and departure warning system[J].Pattern Recognition,2018,73:216-234.DOI:10.1016/j.patcog.2017.08.014.
[2] 储开斌,郭俊俊,朱栋.复杂道路环境下车道线快速提取方法[J].实验室研究与探索,2020,39(7):11-15.DOI:10.3969/j.issn.1006-7167.2020.07.003.
[3] 洪伟,王吉通,刘宇,等.基于DBSCAN的复杂环境下车道线鲁棒检测与跟踪[J].吉林大学学报(工学版),2020,212(6):187-195.
[4] MOON Y Y,GEEM Z W,HAN G T.Vanishing point detection for self-driving car using harmony search algorithm[J].Swarm and Evolutionary Computation,2018,41:111-119.DOI:10.1016/j.swevo.2018.02.007.
[5] 刘彬,刘宏哲.基于改进Enet网络的车道线检测算法[J].计算机科学,2020,47(4):142-149.DOI:10.11896/jsjkx.190500021.
[6] 崔文靓,王玉静,康守强,等.基于改进YOLOv3算法的公路车道线检测方法[J/OL].自动化学报,2019:1-9.[2019-06-06] .http://kns.cnki.net/kcms/detail/11.2109.TP.20190605.1051.001.html.DOI:10.16383/j.aas.c190178.
[7] 田锦,袁家政,刘宏哲.基于实例分割的车道线检测及自适应拟合算法[J].计算机应用,2020,40(7):1932-1937.DOI:10.11772/j.issn.1001-9081.2019112030.
[8] 吴一全,刘莉.基于视觉的车道线检测方法研究进展[J].仪器仪表学报,2019,40(12):92-109.DOI:10.19650/j.cnki.cjsi.J1905719.
[9] TIAN Youjin,CUI Wei,LI Xingguang,et al.A robust lane detection method based on vanishing point estimation[J].Procedia computer science,2018,131:354-360.DOI:10.1016/j.procs.2018.04.174.
[10] YAO Xifeng,ZHAO Chunhui.Hyperspectral anomaly detection based on the bilateral filter[J].Infrared Physics and Technology,2018,92:144-153.DOI:10.1016/j.infrared.2018.05.028.
[11] 车畅,兰文宝.Canny算法和中值滤波法的红外全景图像拼接[J].激光杂志,2020,41(5):109-113.DOI:10.14016/j.cnki.jgzz.2020.05.109.
[12] LAAROUSSI S,BAATAOUI A,HALLI A,et al.A dynamic mosaicking method for finding an optimal seamline with Canny edge detector[J].Procedia Computer Science,2019,148:618-626.DOI:10.1016/j.procs.2019.01.050.
[13] GAURAV K,GHANEKAR U.Image steganography based on Canny edge detection, dilation operator and hybrid coding[J].Journal of Information Security and Applications,2018,41:41-51.DOI:10.1016/j.jisa.2018.05.001.
[14] 徐超,平雪良.基于改进随机Hough变换的直线检测算法[J].激光与光电子学进展,2019,56(5):66-73.DOI:10.3788/LOP56.051001.
[15] CHEN Jiqing,QIANG Hu,WU Jiahua,et al.Extracting the navigation path of a tomato-cucumber greenhouse robot based on a median point Hough transform[J].Computers and Electronics in Agriculture,2020,174:105472.DOI:10.1016/j.compag.2020.105.

备注/Memo

备注/Memo:
收稿日期: 2020-09-18
通信作者: 李军(1964-),男,教授,博士,主要从事发动机排放与控制、新能源汽车和智能车辆控制的研究.E-mail:cqleejun@163.com.
基金项目: 重庆市重点实验室资助项目(CSTC2015yfpt-zdsys30001)
更新日期/Last Update: 2021-07-20