[1]朱彬如,万相奎,金志尧,等.运用双向长短期记忆模型的心拍分类算法[J].华侨大学学报(自然科学版),2021,42(3):384-390.[doi:10.11830/ISSN.1000-5013.202007019]
 ZHU Binru,WANG Xiangkui,JIN Zhiyao,et al.Heartbeat Classification Algorithm Using Bi-Directional Long-Short-Term Memory Model[J].Journal of Huaqiao University(Natural Science),2021,42(3):384-390.[doi:10.11830/ISSN.1000-5013.202007019]
点击复制

运用双向长短期记忆模型的心拍分类算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第3期
页码:
384-390
栏目:
出版日期:
2021-05-20

文章信息/Info

Title:
Heartbeat Classification Algorithm Using Bi-Directional Long-Short-Term Memory Model
文章编号:
1000-5013(2021)03-0384-07
作者:
朱彬如 万相奎 金志尧 刘俊杰 张明瑞
湖北工业大学 电气与电子工程学院, 湖北 武汉 430068
Author(s):
ZHU Binru WANG Xiangkui JIN Zhiyao LIU Junjie ZHANG Mingrui
School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
关键词:
LSTM BiLSTM 心拍分类 自适应阈值
Keywords:
LSTM BiLSTM heartbeat classification adaptive threshold
分类号:
TP183
DOI:
10.11830/ISSN.1000-5013.202007019
文献标志码:
A
摘要:
为提高心拍的分类效果,研究基于双向长短期记忆(BiLSTM)模型的深度学习算法.首先,采用“双斜率”法对心电信号进行预处理;然后,设计自适应阈值对预处理后的心电信号进行QRS波定位,并依据R波波峰分割截取心拍;最后,采用BiLSTM模型的深度学习算法对获取的心拍形态进行分类.使用MIT-BIH心率失常数据库验证算法有效性,实验结果表明:文中算法对正常或束支传导阻滞(N)、室上性异常(S)、心室异常(V)、融合(F)类型的敏感性分别为98.56%,97.10%,93.33%,79.52%,特异性分别为98.38%,98.08%,98.54%,99.65%;与传统的支持向量机等方法相比,文中算法能够进一步提高心拍分类的正确率.
Abstract:
In order to improve the classification effect of heart beats, a deep learning algorithm based on bi-directional long and short-term memory(BiLSTM)model is studied. Firstly, the “double slope” method is used to preprocess the electrocardiogram signal. Then, an adaptive threshold is designed to perform the preprocessed electrocardiogram signal. QRS waves are located, and heartbeats are intercepted according to R wave peak segmentation. Finally, the deep learning algorithm of BiLSTM model is used to classify the acquired heartbeat shapes. MIT-BIH arrhythmia database is used to verify the effectiveness of the algorithm. The experimental results show that the sensitivity of the proposed algorithm to bundle branch block(N), supraventricular abnormality(S), ventricular abnormality(V), and fusion(F)is 98.56%, 97.10%, 93.33%, 79.52%, specificity were 98.38%, 98.08%, 98.54%, 99.65%, respectively; compared with the traditional support vector machine method, the proposed algorithm can further improve the accuracy of heartbeat classification.

参考文献/References:

[1] 胡盛寿,高润,刘力生,等.《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.DOI:10.3969/j.issn.1000-3614.2019.03.001.
[2] 陈伟伟,高润霖,刘力生,等.《中国心血管病报告2017》概要[J].中国循环杂志,2018,33(1).DOI:10.3969/j.issn.1000-3614.2018.01.001.
[3] VIMAL C,SATHISH B.Random forest classifier based ECG arrhythmia classification[J].International Journal of Healthcare Information Systems and Informatics,2009,5(2):1-10.DOI:10.4018/jhisi.2010040101.
[4] LANATá A,VALENZA G,MANCUSO C,et al.Robust multiple cardiac arrhythmia detection through bispectrum analysis[J].Expert Systems with Applications,2011,38(6):6798-6804.DOI:10.1016/j.eswa.2010.12.066.
[5] YEH Y C,CHIOU C W,LIN H J.Analyzing ECG for cardiac arrhythmia using cluster analysis[J].Expert Systems with Applications,2012,39(1):1000-1010.DOI:10.1016/j.eswa.2011.07.101.
[6] GOMES P R,SOARES F O,CORREIA J H,et al.ECG Data-Acquisition and classification system by using wavelet-domain Hidden Markov Models[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology.Buenos Aires:IEEE Press,2010:4670-4673.DOI:10.1109/IEMBS.2010.5626456.
[7] ZUBAIR M,KIM J,YOON C.An automated ECG beat classification system using convolutional neural networks[C]//6th International Conference on IT Convergence and Security.Prague:IEEE Press,2016:1-5.DOI:10.1109/ICITCS.2016.7740310.
[8] KIRANYAZ S,INCE T,HAMILA R,et al.Convolutional neural networks for patient-specific ECG classification[C]//37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Milan:IEEE Press,2015:2608-2611.DOI:10.1109/EMBC.2015.7318926.
[9] AL RAHHAL M M,BAZI Y,ALHICHRI H,et al.Deep learning approach for active classification of electrocardiogram signals[J].Information Sciences,2016,345(1):340-354.DOI:10.1016/j.ins.2016.01.082.
[10] ZHANG Chenshuang,WANG Guijin,ZHAO Jingwei,et al.Patient-specific ECG classification based on recurrent neural networks and clustering technique[C]//13th IASTED International Conference on Biomedical Engineering.Innsbruck:IEEE Press,2017:63-67.DOI:10.2316/P.2017.852-029.
[11] EBRAHIMZADEH E,MANUCHEHRI M S,AMOOZEGAR S,et al.A time local subset feature selection for prediction of sudden cardiac death from ECG signal[J].Medical and Biological Engineering and Computing,2018,56(7):1253-1270.DOI:10.1007/s11517-017-1764-1.
[12] WANG Yichao,DEEPU C J,LIAN Y.A computationally efficient QRS detection algorithm for wearable ECG sensors[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Boston:IEEE Press,2011:5641-5644.DOI:10.1109/IEMBS.2011.6091365.
[13] 王吉鸣,吕颖莹,包涛,等.动态心电监测系统介绍及关键技术水平分析[J].中国医疗设备,2016,31(10):71-74.DOI:10.3969/j.issn.1674-1633.2016.10.021.
[14] 赵羿欧,刘扬.一种改进的差分阈值心电检测算法[J].计算机工程,2011(增刊1):347-348.
[15] 梁小龙.基于CNN和LSTM结合的心律失常分类研究[D].重庆:西南大学,2019.
[16] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.DOI:10.1162/neco.1997.9.8.1735.
[17] GONZáLEZ AV,HANSEN VPB,BINGEL J,et al.Coastal at semeval-2019 task 3: Affect classification in dialogue using attentive bilstms[C]//Proceedings of the 13th International Workshop on Semantic Evaluation.Minneapolis:[s.n.],2019:169-174.DOI:10.18653/v1/S19-2026.
[18] MOODY G B,MARK R G.The impact of the MIT-BIH arrhythmia database.[J].IEEE Engineering in Medicine and Biology Magazine,2002,20(3):45-50.DOI:10.1109/51.932724.
[19] Association for the Advancement of Medical Instrumentation.Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms: ANSI/AAMI EC57:2012[S].Arlington:American National Standard,2013.
[20] AFKHAMI R G,AZARNIA G,TINATI M A.Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals[J].Pattern Recognition Letters,2016,70:45-51.DOI:10.1016/j.patrec.2015.11.018.
[21] LI Taiyong,ZHOU Min.ECG classification using wavelet packet entropy and random forests[J].Entropy,2016,18(8):285.DOI:10.3390/e18080285.

备注/Memo

备注/Memo:
收稿日期: 2020-07-10
通信作者: 万相奎(1976-),男,教授,博士,主要从事生物医学工程的研究.E-mail:ruisin@hotmail.com.
基金项目: 国家自然科学基金资助项目(61571182); 湖北省自然科学基金资助项目(2015CFB449); 湖北省教育厅科学技术研究计划重点资助项目(D20151404)
更新日期/Last Update: 2021-05-20