参考文献/References:
[1] 胡盛寿,高润,刘力生,等.《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.DOI:10.3969/j.issn.1000-3614.2019.03.001.
[2] 陈伟伟,高润霖,刘力生,等.《中国心血管病报告2017》概要[J].中国循环杂志,2018,33(1).DOI:10.3969/j.issn.1000-3614.2018.01.001.
[3] VIMAL C,SATHISH B.Random forest classifier based ECG arrhythmia classification[J].International Journal of Healthcare Information Systems and Informatics,2009,5(2):1-10.DOI:10.4018/jhisi.2010040101.
[4] LANATá A,VALENZA G,MANCUSO C,et al.Robust multiple cardiac arrhythmia detection through bispectrum analysis[J].Expert Systems with Applications,2011,38(6):6798-6804.DOI:10.1016/j.eswa.2010.12.066.
[5] YEH Y C,CHIOU C W,LIN H J.Analyzing ECG for cardiac arrhythmia using cluster analysis[J].Expert Systems with Applications,2012,39(1):1000-1010.DOI:10.1016/j.eswa.2011.07.101.
[6] GOMES P R,SOARES F O,CORREIA J H,et al.ECG Data-Acquisition and classification system by using wavelet-domain Hidden Markov Models[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology.Buenos Aires:IEEE Press,2010:4670-4673.DOI:10.1109/IEMBS.2010.5626456.
[7] ZUBAIR M,KIM J,YOON C.An automated ECG beat classification system using convolutional neural networks[C]//6th International Conference on IT Convergence and Security.Prague:IEEE Press,2016:1-5.DOI:10.1109/ICITCS.2016.7740310.
[8] KIRANYAZ S,INCE T,HAMILA R,et al.Convolutional neural networks for patient-specific ECG classification[C]//37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Milan:IEEE Press,2015:2608-2611.DOI:10.1109/EMBC.2015.7318926.
[9] AL RAHHAL M M,BAZI Y,ALHICHRI H,et al.Deep learning approach for active classification of electrocardiogram signals[J].Information Sciences,2016,345(1):340-354.DOI:10.1016/j.ins.2016.01.082.
[10] ZHANG Chenshuang,WANG Guijin,ZHAO Jingwei,et al.Patient-specific ECG classification based on recurrent neural networks and clustering technique[C]//13th IASTED International Conference on Biomedical Engineering.Innsbruck:IEEE Press,2017:63-67.DOI:10.2316/P.2017.852-029.
[11] EBRAHIMZADEH E,MANUCHEHRI M S,AMOOZEGAR S,et al.A time local subset feature selection for prediction of sudden cardiac death from ECG signal[J].Medical and Biological Engineering and Computing,2018,56(7):1253-1270.DOI:10.1007/s11517-017-1764-1.
[12] WANG Yichao,DEEPU C J,LIAN Y.A computationally efficient QRS detection algorithm for wearable ECG sensors[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Boston:IEEE Press,2011:5641-5644.DOI:10.1109/IEMBS.2011.6091365.
[13] 王吉鸣,吕颖莹,包涛,等.动态心电监测系统介绍及关键技术水平分析[J].中国医疗设备,2016,31(10):71-74.DOI:10.3969/j.issn.1674-1633.2016.10.021.
[14] 赵羿欧,刘扬.一种改进的差分阈值心电检测算法[J].计算机工程,2011(增刊1):347-348.
[15] 梁小龙.基于CNN和LSTM结合的心律失常分类研究[D].重庆:西南大学,2019.
[16] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.DOI:10.1162/neco.1997.9.8.1735.
[17] GONZáLEZ AV,HANSEN VPB,BINGEL J,et al.Coastal at semeval-2019 task 3: Affect classification in dialogue using attentive bilstms[C]//Proceedings of the 13th International Workshop on Semantic Evaluation.Minneapolis:[s.n.],2019:169-174.DOI:10.18653/v1/S19-2026.
[18] MOODY G B,MARK R G.The impact of the MIT-BIH arrhythmia database.[J].IEEE Engineering in Medicine and Biology Magazine,2002,20(3):45-50.DOI:10.1109/51.932724.
[19] Association for the Advancement of Medical Instrumentation.Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms: ANSI/AAMI EC57:2012[S].Arlington:American National Standard,2013.
[20] AFKHAMI R G,AZARNIA G,TINATI M A.Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals[J].Pattern Recognition Letters,2016,70:45-51.DOI:10.1016/j.patrec.2015.11.018.
[21] LI Taiyong,ZHOU Min.ECG classification using wavelet packet entropy and random forests[J].Entropy,2016,18(8):285.DOI:10.3390/e18080285.