[1]谢毅晖,卢毅敏.有限体积海岸海洋模型模拟泉州湾人工岛建设对水交换的影响[J].华侨大学学报(自然科学版),2021,42(3):369-377.[doi:10.11830/ISSN.1000-5013.202007015]
 XIE Yihui,LU Yimin.Impact of Artificial Island Construction in Quanzhou Bay on Water Exchange Using Simulation of Finite-Volume Coastal Ocean Model[J].Journal of Huaqiao University(Natural Science),2021,42(3):369-377.[doi:10.11830/ISSN.1000-5013.202007015]
点击复制

有限体积海岸海洋模型模拟泉州湾人工岛建设对水交换的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第3期
页码:
369-377
栏目:
出版日期:
2021-05-20

文章信息/Info

Title:
Impact of Artificial Island Construction in Quanzhou Bay on Water Exchange Using Simulation of Finite-Volume Coastal Ocean Model
文章编号:
1000-5013(2021)03-0369-09
作者:
谢毅晖 卢毅敏
福州大学 数字中国研究院(福建), 福建 福州 350003
Author(s):
XIE Yihui LU Yimin
Digital China Research Institute(Fujian), Fuzhou University, Fuzhou 350003, China
关键词:
有限体积海岸海洋模型 水交换 数值模拟 人工岛 泉州湾
Keywords:
finite-volume coastal ocean model water exchange numerical simulation artificial island Quanzhou Bay
分类号:
P731.2
DOI:
10.11830/ISSN.1000-5013.202007015
文献标志码:
A
摘要:
以泉州湾秀涂人工岛的建设为例,基于有限体积海岸海洋模型,建立泉州湾三维数值模型,模拟分析建岛前、后水动力特征、潮致余流和纳潮量的变化.采用欧拉弥散方法模拟污染物浓度的对流扩散,对泉州湾的水交换能力进行分析.结果表明:建岛后,大部分海域的海潮流速约减小0.1 m·s-1;石湖港区人工岛连线以西大部分区域的潮致余流变化不显著,但湾口的潮致余流出现较为明显的减少;纳潮量的变化较为明显,小潮期间纳潮量的变化率为10.09%,使小潮期间湾内水体与外海的交换能力变弱,更易遭受污染威胁;洛阳江流域和金屿的污染物浓度差变化较大,导致湾内水体的半交换时间约增加3 d.
Abstract:
Taking the construction of the Xiutu artificial island in Quanzhou Bay as an example, a three-dimensional numerical model of Quanzhou Bay was established based on the finite-volume coastal ocean model, and the changes of hydrodynamic characteristics, tidal residual current and tidal capacity before and after the construction of the island were simulated and analyzed. Euler dispersion method was used to simulate the convection and diffusion of pollutant concentration, and the water exchange capacity of Quanzhou Bay was analyzed. The results showed that after the construction of the island, the tidal velocity in most of the sea area was decreased about 0.1 m·s-1. The tidal residual current in most areas of the west of the artificial island line in Shihu Port area did not change significantly, but decreased markedly in the bay mouth. The change of tidal capacity was obvious, and the change rate of tidal capacity was 10.09% during neap tide, which weakened the exchange capacity between the water in the bay and the open sea during neap tide and made it more vulnerable to pollution. The difference of pollutant concentration between Luoyang River basin and Jinyu was large, which led to the increase of half exchange time of water in the bay by about 3 days.

参考文献/References:

[1] 陈培焕.秀涂“人工岛”工程建设初探[J].福建交通科技,2015(3):95-96.
[2] 黄彬.泉州湾秀涂人工岛总体设计[J].水运工程,2016(7):36-39.DOI:10.3969/j.issn.1002-4972.2016.07.008.
[3] 林作梁,朱学明,鲍献文,等.基于FVCOM的泉州湾海域三维潮汐与潮流数值模拟[J].海洋学报(中文版),2013,35(1):15-24.DOI:10.3969/j.issn.0253-4193.2013.01.003.
[4] 杨晨,刘颖,路宽.泉州湾潮流场的数值模拟研究[J].海洋技术学报,2017,36(3):117-120.DOI:10.3969/j.issn.1003-2029.2017.03.022.
[5] BOLIN B,RODHE H.A note on the concepts of age distribution and transit time in natural reservoirs[J].Tellus,1973,25(1):58-62.DOI:10.1111/j.2153-3490.1973.tb01594.x.
[6] ZIMMERMAN J T F.Mixing and flushing of tidal embayments in the western Dutch Wadden Sea, part I: Distribution of salinity and calculation of mixing time scales[J].Netherlands Journal of Sea Research,1976,10(2):149-191.DOI:10.1016/0077-7579(76)90013-2.
[7] LUFF R,POHLMANN T.Calculation of water exchange times in the ICES-boxes with a eulerian dispersion model using a half-life time approach[J].Ocean Dynamics,1995,47(4):287-299.DOI:10.1007/BF02737789.
[8] 朱君,韩树宗,郑连远.影响坦帕湾水交换的三种因素[J].海洋与湖沼,2015,46(1):17-26.DOI:10.11693/hyhz20140400125.
[9] 王聪,林军,陈丕茂,等.大亚湾水交换的数值模拟研究[J].南方水产,2008,4(4):8-15.DOI:10.3969/j.issn.2095-0780.2008.04.002.
[10] 袁德奎,李广,王道生,等.围填海工程对渤海湾水交换能力影响的数值模拟[J].天津大学学报(自然科学与工程技术版),2015,48(7):605-613.DOI:10.11784/tdxbz201312095.
[11] 王雪,陈学恩.胶州湾纳潮量和水交换数值模拟[J].中国海洋大学学报(自然科学版),2017,47(3):1-9.DOI:10.16441/j.cnki.hdxb.20160069.
[12] 吕新刚,赵昌,夏长水,等.胶州湾水交换及湾口潮余流特征的数值研究[J].海洋学报(中文版),2010,32(2):20-30.
[13] 陈振华,夏长水,乔方利.钦州湾水交换能力数值模拟研究[J].海洋学报(中文版),2017,39(3):14-23.DOI:10.3969/j.issn.0253-4193.2017.03.002.
[14] 杨青莹,杨万康,潘冲,等.花场湾水交换能力计算与研究[J].海洋技术学报,2018,37(6):56-60.DOI:10.3969/j.issn.1003-2029.2018.06.009.
[15] CHEN Changsheng,BEARDSLEY R C,COWLES G.An unstructured grid, finite-volume community ocean model FVCOM user manual[J].Oceanography,2006,19(1):78-89.DOI:10.5670/oceanog.2006.92.
[16] 侯庆志,左利钦,陆永军,等.强潮海湾水动力环境对人类干预的响应: 以泉州湾为例[J].应用基础与工程科学学报,2017,25(6):1124-1138.DOI:10.16058/j.issn.1005-0930.2017.06.006.
[17] 陈金瑞,陈学恩,于华明,等.胶州湾潮汐潮流高分辨率数值模拟研究[J].中国海洋大学学报(自然科学版),2011,41(增刊2):29-35.DOI: 10.16441/j.cnki.hdxb.2011.z2.005.
[18] 宋德海,鲍献文,朱学明.基于FVCOM的钦州湾三维潮流数值模拟[J].热带海洋学报,2009,28(2):7-14.DOI:10.3969/j.issn.1009-5470.2009.02.002.
[19] 龚旭东,俞缙,蓝尹余.半封闭海湾围填海对水动力环境的影响分析[J].华侨大学学报(自然科学版),2019,40(1):72-78.DOI:10.11830/ISSN.1000-5013.201808015.
[20] 胡建宇.罗源湾海水与外海水的交换研究[J].海洋环境科学,1998,17(3):51-54.
[21] JIA Han,SHEN Yongming,SU Meirong,et al.Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay[J].Frontiers of Earth Science,2018,12(3):625-639.DOI:10.1007/s11707-018-0688-x.
[22] 王兴刚,董敏,熊伟.连云港港主体港区水交换三维数值模拟[J].水运工程,2015(4):92-99.DOI:10.3969/j.issn.1002-4972.2015.04.017.
[23] 陈妍宇,宋德海,鲍献文,等.胶州湾跨海大桥对海湾水体交换的影响[J].海洋与湖沼,2019,50(4):707-718.DOI:10.11693/hyhz20180900211.

备注/Memo

备注/Memo:
收稿日期: 2020-07-09
通信作者: 卢毅敏(1973-),男,副研究员,博士,主要从事资源环境模型与系统模拟的研究.E-mail:luym@lreis.ac.cn.
基金项目: 国家重点研发计划项目(2017YFB0503500)
更新日期/Last Update: 2021-05-20