参考文献/References:
[1] 范林源,王德林,李颖颖,等.高渗透率风电并网后的调频控制策略研究[J].电工技术,2019,13(1):26-29,33.DOI:10.3969/j.issn.1002-1388.2019.13.009.
[2] 刘吉臻,姚琦,柳玉,等.风火联合调度的风电场一次调频控制策略研究[J].中国电机工程学报,2017,37(12):3462-3469.DOI:10.13334/j.0258-8013.pcsee.161663.
[3] 刘彬彬,杨健维,廖凯,等.基于转子动能控制的双馈风电机组频率控制改进方案[J].电力系统自动化,2016,40(16):17-22.DOI:10.7500/AEPS20150930009.
[4] 苗福丰,唐西胜,齐智平.风储联合调频下的电力系统频率特性分析[J].高电压技术,2015,41(7):2209-2216.
[5] ZHANG Z S,SUN Y Z,LIN J,et al.Coordinated frequency regulation by doubly fed induction generator-based wind power plants[J].Iet Renewable Power Generation,2012,6(1):38-47.DOI:10.1049/iet-rpg.2010.0208.
[6] LIU Juelin,YANG Zhifang,YU Juan,et al.Coordinated control parameter setting of DFIG wind farms with virtual inertia control[J].International Journal of Electrical Power and Energy Systems,2020,122:106167.DOI:10.1016/j.ijepes.2020.106167.
[7] 李少林,王伟胜,张兴,等.风力发电对系统频率影响及虚拟惯量综合控制[J].电力系统自动化,2019,43(15):64-70.DOI:10.7500/AEPS20190103005.
[8] LIU Yancheng,ZHUANG Xuzhou,ZHANG Qinjin,et al.A novel droop control method based on virtual frequency in DC microgrid[J].International Journal of Electrical Power and Energy Systems,2020,119:105946.DOI:10.1016/j.ijepes.2020.105946.
[9] LEE J,YONG C K,MULJADI E,et al.Droop assignment algorithm for the inertial control of a DFIG-based wind power plant for supporting the grid frequency[C]//IEEE Symposium on Power Electronics and Machines for Wind and Water Applications.Milwaukee:IEEE Press,2014:1-5.DOI:10.1109/PEMWA.2014.6912223.
[10] 陈曦寒,高赐威.考虑定桨距和变桨距风机联合控制的风电场有功功率控制策略[J].电网技术,2015,39(7):1892-1899.DOI:10.13335/j.1000-3673.pst.2015.07.020.
[11] DíAZ-GONZáLEZ F,HAU M,SUMPER H.Participation of wind power plants in system frequency control: Review of grid code requirements and control methods[J].Renewable and Sustainable Energy Reviews,2014,34:551-564.DOI:10.1016/j.rser.2014.03.040.
[12] 姜莹,边晓燕,李东东,等.基于可变减载率超速控制的双馈异步风机参与微电网调频研究[J].电机与控制应用,2017,44(9):118-124.DOI:10.3969/j.issn.1673-6540.2017.09.022.
[13] BAO Yuqing,LI Yang.On deloading control strategies of wind generators for system frequency regulation[J].International Transactions on Electrical Energy Systems,2015,25(4):623-635.DOI:10.1002/etep.1855.
[14] 陈斌,王德林,张俊武,等.双馈风电机组参与电网一次调频的多风速段综合控制及变参数整定[J].电工电能新技术,2018,37(11):40-47.DOI:10.12067/ATEEE1802005.
[15] 付媛,王毅,张祥宇,等.变速风电机组的惯性与一次调频特性分析及综合控制[J].中国电机工程学报,2014(27):4706-4716.DOI:10.13334/j.0258-8013.pcsee.2014.27.018.
[16] 张昭遂,孙元章,李国杰,等.超速与变桨协调的双馈风电机组频率控制[J].电力系统自动化,2011,35(17):20-25,43.
[17] 张旭,陈云龙,岳帅,等.风电参与电力系统调频技术研究的回顾与展望[J].电网技术,2018,42(6):1793-1803.DOI:10.13335/j.1000-3673.pst.2018.0359.
[18] 赵嘉兴,高伟,上官明霞,等.风电参与电力系统调频综述[J].电力系统保护与控制,2017,45(21):157-169.DOI:10.7667/PSPC161762.
[19] 陈宇航,王刚,侍乔明,等.一种新型风电场虚拟惯量协同控制策略[J].电力系统自动化,2015,39(5):27-33.DOI:10.7500/AEPS20140212007.
[20] 丁磊,尹善耀,王同晓,等.结合超速备用和模拟惯性的双馈风机频率控制策略[J].电网技术,2015,39(9):2385-2391.DOI:10.13335/j.1000-3673.pst.2015.09.002.
[21] 赵晶晶,吕雪,符杨,等.基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J].电工技术学报,2015,30(5):59-68.DOI:10.3969/j.issn.1000-6753.2015.05.008.
[22] REYES V,RODRIGUEZ J J,CARRANZ O,et al.Review of mathematical models of both the power coefficient and the torque coefficient in wind turbines[C]//IEEE International Symposium on Industrial Electronics.Buzios:IEEE Press,2015:1458-1463.DOI:10.1109/ISIE.2015.7281688.
[23] 马少康,耿华,杨耕,等.基于功率跟踪曲线切换的变速风电机组虚拟惯量控制[J].电力系统自动化,2018,42(17):42-48.DOI:10.7500/AEPS20170901004.
[24] 胡一鸣.双馈风力发电机参与电力系统频率调节的控制策略研究[D].成都:西南交通大学,2017.