[1]严铁尉,李红艳,崔建国,等.废菌渣活性炭对苯酚和铜离子的吸附性能分析[J].华侨大学学报(自然科学版),2021,42(2):207-213.[doi:10.11830/ISSN.1000-5013.202005009]
 YAN Tiewei,LI Hongyan,CUI Jianguo,et al.Adsorption of Phenol and Copper Ions by Mushroom Residue Activated Carbon[J].Journal of Huaqiao University(Natural Science),2021,42(2):207-213.[doi:10.11830/ISSN.1000-5013.202005009]
点击复制

废菌渣活性炭对苯酚和铜离子的吸附性能分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第2期
页码:
207-213
栏目:
出版日期:
2021-03-20

文章信息/Info

Title:
Adsorption of Phenol and Copper Ions by Mushroom Residue Activated Carbon
文章编号:
1000-5013(2021)02-0207-07
作者:
严铁尉12 李红艳12 崔建国12 张峰12
1. 太原理工大学 环境科学与工程学院, 山西 太原 030600;2. 山西省市政工程研究生教育创新中心, 山西 太原 030600
Author(s):
YAN Tiewei12 LI Hongyan12 CUI Jianguo12 ZHANG Feng12
1. College of Environment Science and Engineering, Taiyuan University of Technology, Taiyuan 030600, China; 2. Shanxi Municipal Engineering Graduate Education Innovation Center, Taiyuan 030600, China
关键词:
废菌渣 活性炭 苯酚 铜离子 等温吸附模型
Keywords:
mushroom residue activated carbon phenol copper ions isothermal adsorption model
分类号:
X523
DOI:
10.11830/ISSN.1000-5013.202005009
文献标志码:
A
摘要:
以废菌渣为原料,采用硫酸铝与硝酸复合改性制备废菌渣活性炭,应用红外光谱分析和等电点进行表征,并对活性炭吸附苯酚、铜离子的动力学与等温线进行拟合分析.实验结果表明:活性炭具有芳香共轭结构,表面富含多种官能团,有利于对苯酚、铜离子的吸附;活性炭对苯酚、铜离子的吸附满足二级动力学模型,且颗粒内扩散不是控制吸附速率的主要步骤;活性炭对苯酚的吸附为自发放热的优惠吸附,而对铜离子的吸附为自发吸热的优惠吸附,符合Freundlich等温吸附模型;双组分等温吸附仍满足Freundlich等温吸附模型,苯酚与铜离子在活性炭上的吸附表现为协同作用;活性炭对苯酚的吸附机理主要为疏水键力,而对铜离子的吸附机理主要为离子交换和配位作用.
Abstract:
Activated carbon from spent mushroom residue was prepared by composite modification of aluminum sulfate and nitric acid, and characterized by infrared spectroscopy and isoelectric point. The kinetics and isotherm of adsorption of phenol and copper ions on activated carbon were analyzed by fitting. The experimental results show that the activated carbon has an aromatic conjugate structure and the surface is rich in various functional groups, which is conducive to the adsorption of phenol and copper ions; the adsorption of phenol and copper ions by activated carbon satisfies the second-level kinetic model, and intra-particle diffusion is not the main step to control the adsorption rate; the adsorption of phenol by activated carbon is a preferential adsorption of self-release heat, and the adsorption of copper ions is a preferential adsorption of spontaneous heat absorption, which is in line with the Freundlich isotherm adsorption model; the two-component isothermal adsorption still meets the Freundlich isotherm model, and the adsorption of phenol and copper ions on activated carbon is synergistic; the adsorption mechanism of activated carbon on phenol is mainly hydrophobic bond force, and the adsorption mechanism for copper ions is mainly ion exchange and coordination.

参考文献/References:

[1] SHAHRYARI S,ZAHIRI H S,HAGHBEEN K,et al.High phenol degradation capacity of a newly characterized Acinetobacter sp. SA01: Bacterial cell viability and membrane impairment in respect to the phenol toxicity[J].Ecotoxicology and Environmental Safety,2018,164:455-466.DOI:10.1016/j.ecoenv.2018.08.051.
[2] BARROS G K G C,MELO R P F,DE BARROS NETO E L.Removal of copper ions using sodium hexadecanoate by ionic flocculation[J].Separation and Purification Technology,2018,200:294-299.DOI:10.1016/j.seppur.2018.01.062.
[3] SIU P,KOONG L,SALEEM J,et al.Equilibrium and kinetics of copper ions removal from wastewater by ion exchange[J].Chinese Journal of Chemical Engineering,2016,24(1):94-100.DOI:10.1016/j.cjche.2015.06.017.
[4] WANG Wu,JIANG Fengying,WU Fei,et al.Biodetection and bioremediation of copper ions in environmental water samples using a temperature-controlled, dual-functional Escherichia coli cell[J].Applied Microbiology and Biotechnology,2019,103(16):6797-6807.DOI:10.1007/s00253-019-09984-9.
[5] LIU Qiong,QU Lingbo,REN Baozeng.Effective removal of copper ions from aqueous solution by iminodiacetic acid-functionalized Paeonia ostii seed coats[J].Journal of Dispersion Science and Technology,2019,38(2):1-10.DOI:10.1080/01932691.2019.1614457.
[6] 侯森,马翠,贾胜勇,等.牛粪炭@Fe3O4催化臭氧处理煤气化废水的特性实验[J].华侨大学学报(自然科学版),2019,40(3):356-362.DOI:10.11830/ISSN.1000-5013.201902009.
[7] SUN Zhiwei,SRINIVASAKANNAN C,LIANG Jinsheng,et al.Preparation and characterization of shiitake mushroom-based activated carbon with high adsorption capacity[J].Arabian Journal for Science and Engineering,2019,44(6):5443-5456.DOI:10.1007/s13369-019-03746-5.
[8] OH W D,LEE M G H,UDAYANGA W D C,et al.Insights into the single and binary adsorption of copper(Ⅱ)and nickel(Ⅱ)on hexagonal boron nitride: Performance and mechanistic studies[J].Journal of Environmental Chemical Engineering,2019,7(1):102872.DOI:10.1016/j.jece.2018.102872.
[9] 姚夏妍,鲁兴武,程亮,等.磁场对氨基和巯基修饰多壁碳纳米管复合材料吸附苯酚的影响[J].化工新型材料,2019,47(1):189-193.
[10] MONDAL S,MAJUMDER S K.Honeycomb-like porous activated carbon for efficient copper(Ⅱ)adsorption synthesized from natural source: Kinetic study and equilibrium isotherm analysis[J].Journal of Environmental Chemical Engineering,2019,7(4):103236.DOI:10.1016/j.jece.2019.103236.
[11] HOTOVü G,SLOVüK V,ZELENKA T,et al.The role of the oxygen functional groups in adsorption of copper(Ⅱ)on carbon surface[J].Science of The Total Environment,2020,711:135436.DOI:10.1016/j.scitotenv.2019.135436.
[12] HOSLETT J,GHAZAL H,AHMAD D,et al.Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste[J].Science of The Total Environment,2019,673:777-789.DOI:10.1016/j.scitotenv.2019.04.085.
[13] ONARAN G,G?REL L,ARGUN H.Detoxification of waste hand paper towel hydrolysate by activated carbon adsorption[J].International Journal of Environmental Science and Technology,2020,17(2):799-808.DOI:10.1007/s13762-019-02499-w.
[14] MOBARAK M,MOHAMED E A,SELIM A Q,et al.Surfactant-modified serpentine for fluoride and Cr(Ⅵ)adsorption in single and binary systems: Experimental studies and theoretical modeling[J].Chemical Engineering Journal,2019,369:333-343.DOI:10.1016/j.cej.2019.03.086.
[15] ABIRAM K,SAIKIA K,NEERAJ G,et al.Remediation of bio-refinery wastewater containing organic and inorganic toxic pollutants by adsorption onto chitosan-based magnetic nanosorbent[J].Water Quality Research Journal,2020,55(1):36-51.DOI:10.2166/wqrj.2019.003.

相似文献/References:

[1]魏永聪,黄健榕.在生产中复活合成VAC触媒活性的试验[J].华侨大学学报(自然科学版),1981,2(1):84.[doi:10.11830/ISSN.1000-5013.1981.01.0084]
[2]韩媛媛,翁连进,李志荣.L-组氨酸在活性炭上的吸附等温线[J].华侨大学学报(自然科学版),2006,27(4):441.[doi:10.3969/j.issn.1000-5013.2006.04.029]
 Han Yuanyuan,Weng Lianjin,Li Zhirong.Adsorption Isotherm of L-Histidine on Active Carbon[J].Journal of Huaqiao University(Natural Science),2006,27(2):441.[doi:10.3969/j.issn.1000-5013.2006.04.029]
[3]陈虹霖,宋磊.不同活化方法对开心果壳活性炭的孔结构影响[J].华侨大学学报(自然科学版),2014,35(5):558.[doi:10.11830/ISSN.1000-5013.2014.05.0558]
 CHEN Hong-lin,SONG Lei.Effect of Different Activation Methods on the Pore Structure of Activated Carbons Prepared from Pistachio Shells[J].Journal of Huaqiao University(Natural Science),2014,35(2):558.[doi:10.11830/ISSN.1000-5013.2014.05.0558]
[4]张圆春,汤须崇,薛秀玲,等.低成本铁碳复合非均相Fenton催化剂制备及其性能[J].华侨大学学报(自然科学版),2017,38(4):515.[doi:10.11830/ISSN.1000-5013.201704013]
 ZHANG Yuanchun,TANG Xuchong,XUE Xiuling,et al.Preparation and Properties of Low Cost Iron-Carbon Composite Heterogeneous Fenton Catalysts[J].Journal of Huaqiao University(Natural Science),2017,38(2):515.[doi:10.11830/ISSN.1000-5013.201704013]
[5]龚万祺,孙荣,陈雅贤,等.应用电动力耦合活性炭PRB技术的铬(Ⅵ)污染土壤修复[J].华侨大学学报(自然科学版),2019,40(3):363.[doi:10.11830/ISSN.1000-5013.201810072]
 GONG Wanqi,SUN Rong,CHEN Yaxian,et al.Remediation of Chromate Contaminated Soil UsingElectrokinetics-Coupled Activated Carbon PRB[J].Journal of Huaqiao University(Natural Science),2019,40(2):363.[doi:10.11830/ISSN.1000-5013.201810072]

备注/Memo

备注/Memo:
收稿日期: 2020-05-07
通信作者: 李红艳(1975-),女,副教授,博士,主要从事水处理与能源资源化的研究.E-mail:lhy3166@126.com.
基金项目: 山西省重点研发计划项目(201703D211013, 201803D31046); 山西省研究生联合培养基地人才培养项目(2018JD19)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2021-03-20