[1]王仲昊,万相奎,李风从,等.多模型以动态权重相融合的词相似性分析[J].华侨大学学报(自然科学版),2021,42(1):121-127.[doi:10.11830/ISSN.1000-5013.202003035]
 WANG Zhonghao,WAN Xiangkui,LI Fengcong,et al.Word Similarity Analysis by Multi-Model Fusion WithDynamic Weight[J].Journal of Huaqiao University(Natural Science),2021,42(1):121-127.[doi:10.11830/ISSN.1000-5013.202003035]
点击复制

多模型以动态权重相融合的词相似性分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第1期
页码:
121-127
栏目:
出版日期:
2021-01-20

文章信息/Info

Title:
Word Similarity Analysis by Multi-Model Fusion WithDynamic Weight
文章编号:
1000-5013(2021)01-0121-07
作者:
王仲昊1 万相奎123 李风从1 危竞1 刘俊杰1
1. 湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室, 湖北 武汉 430068;2. 湖北工业大学 太阳能高效利用湖北省协同创新中心, 湖北 武汉 430068;3. 湖北工业大学 湖北省电网智能控制与装备工程技术研究中心, 湖北 武汉 430068
Author(s):
WANG Zhonghao1 WAN Xiangkui123 LI Fengcong1WEI Jing1 LIU Junjie1
1. Key Laboratory of Solar Energy Efficient Utilization and Energy Storage Operation Control in Hubei Province, Hubei University of Technology, Wuhan 430068, China; 2. Solar Energy Efficient Use of Hubei Province Collaborative Innovation Center, Hubei Uni
关键词:
词相似性 统计模型 字典模型 改进的多模型融合 动态权重
Keywords:
word similarity statistical model dictionary model improved multi-model fusion dynamic weights
分类号:
TP391.1
DOI:
10.11830/ISSN.1000-5013.202003035
文献标志码:
A
摘要:
以NLPCC-ICCPOL 2016中文词语相似度比赛中的PKU-500数据集作为评价的参考标准,采用动态权重多模型融合的词相似性进行分析.将得到的斯皮尔曼等级相关系数0.568与NLPCC 2016第1名的结果相比,效果提高了9.6%.结果表明:基于动态权重改进的多模型融合方法,提高计算词相似性的准确率.
Abstract:
Taked the PKU-500 dataset in the NLPCC-ICCPOL 2016 Chinese word similarity competition as the reference standard for evaluation, used dynamic weights multi-model fusion to analyze word similarity, obtained a Spearman rank correlation coefficient of 0.568, which is 9.6% higher than the first place in the NLPCC-ICCPOL 2016. The results show that the improved multi-model fusion method based on dynamic weight improves the accuracy of calculating word similarity.

参考文献/References:

[1] LE Q,MIKOLOV T.Distributed representations of sentences and documents[C]//International Conference on Machine Learning.Pennsylvania:ICML,2014:1188-1196.
[2] HU Fei,LI Li,ZHANG Zili,et al.Emphasizing essential words for sentiment classification based on recurrent neural networks[J].计算机科学技术学报:英文版,2017,32(4):785-795.DOI:10.1007/s11390-017-1759-2.
[3] BOJANOWSKI P,GRAVE E,JOULIN A,et al.Enriching word vectors with subword information[J].Transactions of the Association for Computational Linguistics,2017,5:135-146.DOI:10.1162/tacl_a_00051.
[4] 李舟军,范宇,吴贤杰.面向自然语言处理的预训练技术研究综述[J].计算机科学,2020,47(3):162-173.DOI:10.11896/jsjkx.191000167.
[5] 梅家驹,竺一鸣,高蕴琦,等.同义词词林[M].上海:上海辞书出版社,1983.
[6] 马永起,韩德培,蒙立荣,等.基于How-net的词语语义相似度算法[J].计算机工程,2018,44(6):151-155.DOI:10.19678/j.issn.1000-3428.0047061.
[7] GUO Shaoru,GUAN Yong,LI Ru.Chinese word similarity computing base in combination strategy[C]//Proceedings of NLPCC 2016, Lecture Notes in Artificial Intelligence.Beijing:[s.n.],2016:744-752.DOI:10.1007/978-3-319-50496-4_67.
[8] WU Yunfang,LI Wei.Overview of the NLPCC-ICCPOL 2016 shared task: Chinese word similarity measurement[J].Lecture Notes in Artificial Intelligence,2016,10102:828-839.DOI:10.1007/978-3-319-50496-4_75.
[9] 吴军.数学之美[M].北京:人民邮电出版社,2014.
[10] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 27th Annual Conference on Neural Information processing Systems.New York:NIPS,2013:3111-3119.
[11] 廖胜兰,吉建民,俞畅,等.基于BERT模型与知识蒸馏的意图分类方法[J/OL].[2020-05-07] .https://doi.org/10.19678/j.issn.1000-3428.0057416.
[12] 陈慧,田大钢,冯成刚.多种算法对不同中文文本分类效果比较研究[J].软件导刊,2019,18(5):73-78.DOI:10.3969/j.issn.1003-0077.2019.03.005
[13] 朱靖雯,杨玉基,许斌,等.基于HowNet的语义表示学习[J].中文信息学报,2019,33(3):33-41.DOI:10.11907/rjdk.182489.
[14] 赵倩倩.词语相似度计算及其在语义选择限制知识获取中的应用研究[D].郑州:郑州大学,2018.
[15] 刘群,李素建.基于《知网》的词汇语义相似度计算[C]//第三届汉语词汇语义学研讨会论文集.台北:[s.n.],2002:59-76.
[16] 吕立辉,梁维薇,冉蜀阳.基于词林的词语相似度的度量[J].现代计算机(专业版),2013(1):3-6,9.DOI:10.3969/j.issn.1007-1423(z).2013.01.001.
[17] ZOU Yinfeng,OUYANG Chunping,LIU Yongbin,et al.A similarity algorithm based on the generality and individuality of words[C]//Proceedings of NLPCC 2016, Lecture Notes in Artificial Intelligence.Beijing:[s.n.],2016:549-588.DOI:10.1007/978-3-319-50496-4_48.

相似文献/References:

[1]黄丽玲,黄富贵.直线度误差统计模型识别的实验方法[J].华侨大学学报(自然科学版),2013,34(1):1.[doi:10.11830/ISSN.1000-5013.2013.01.0001]
 HUANG Li-ling,HUANG Fu-gui.Experimental Method of Straightness Error Statistical Model Identification[J].Journal of Huaqiao University(Natural Science),2013,34(1):1.[doi:10.11830/ISSN.1000-5013.2013.01.0001]

备注/Memo

备注/Memo:
收稿日期: 2020-03-29
通信作者: 万相奎(1976-),教授,博士,主要从事嵌入式系统设计与信号处理的研究.E-mail:wanxiangkui@163.com.
基金项目: 国家自然科学基金资助项目(61571182)
更新日期/Last Update: 2021-01-20