[1]宋正勋,马迪,崔焱旭,等.缝隙连接渗透率对钙离子传输的影响[J].华侨大学学报(自然科学版),2021,42(1):83-90.[doi:10.11830/ISSN.1000-5013.202004008]
 SONG Zhengxun,MA Di,CUI Yanxu,et al.Effect of Gap Junction Penetration Rate on Calcium Ions Transport[J].Journal of Huaqiao University(Natural Science),2021,42(1):83-90.[doi:10.11830/ISSN.1000-5013.202004008]
点击复制

缝隙连接渗透率对钙离子传输的影响()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第1期
页码:
83-90
栏目:
出版日期:
2021-01-20

文章信息/Info

Title:
Effect of Gap Junction Penetration Rate on Calcium Ions Transport
文章编号:
1000-5013(2021)01-0083-08
作者:
宋正勋123 马迪12 崔焱旭12 郎百和1 杨立波1 王作斌123
1. 长春理工大学 电子信息工程学院, 吉林 长春 130022;2. 长春理工大学 国家纳米操纵与制造国际联合研究中心, 吉林 长春 130022;3. 长春理工大学 教育部学科创新引智基地(D17017), 吉林 长春 130022
Author(s):
SONG Zhengxun123 MA Di12 CUI Yanxu12 LANG Baihe1 YANG Libo1 WANG Zuobin123
1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2. International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Ch
关键词:
分子通信 缝隙连接 钙离子 渗透性
Keywords:
molecular communication gap junction calcium ion permeability
分类号:
TN911.6
DOI:
10.11830/ISSN.1000-5013.202004008
文献标志码:
A
摘要:
已建立的渗透性模型主要基于连接蛋白的开关特性,却忽略实际蛋白间的差异,在应用上存在局限.从连接蛋白生物特征多样性的角度引入渗透率这一缝隙连接类型参数,对渗透性模型进行改进,分析渗透率对分子通信的时延、传输距离等参数的影响.选取钙离子为传输粒子进行仿真,实验结果验证了模型的准确性,在发送、传输条件一致的前提下,渗透率越高,接收钙离子波的幅度越大,对应的传输距离越远.
Abstract:
The established permeability model is mainly based on the switching characteristics of connexin but ignores the differences between the actual proteins, which has limitations in application. The penetration rate is introduced from the perspective of the biological diversity of connexin, and the permeability model is improved to analyze the influence of penetration rate on parameters such as the time delay and transmission distance of molecular communication. Calcium ions are selected as the transmission particles for simulation. The experimental results verify the accuracy of the model. Under the premise of the same sending and transmitting conditions, the higher the penetration rate is, the larger the amplitude of the received calcium ion wave, and the longer the corresponding transmission distance is.

参考文献/References:

[1] NAKANO T,KOBAYASHI S,SUDA T,et al.Externally controllable molecular communication[J].IEEE Journal on Selected Areas in Communications,2014,32(12):2417-2431.DOI:10.1109/JSAC.2014.2367667.
[2] 田友芳,吴江,宋伟,等.右美托咪定诱导家兔心动过缓窦房结缝隙连接基因蛋白Cx45和Cx31.9表达研究[J].中国药业,2019,28(11):37-39.
[3] 蔡昌.SAH后缝隙连接蛋白在颅内大动脉和微动脉表达差异的研究[D].石河子:石河子大学,2019.
[4] 王同霞,陈章容,吴新华.缝隙连接蛋白40、43与心房颤动的关系[J].国际心血管病杂志,2019,46(4):230-232.
[5] FARSAD N,YILMAZ H B,ECKFORD A W,et al.A comprehensive survey of recent advancements in molecular communication[J].IEEE Communications Surveys and Tutorials,2016,18(3):1887-1919.DOI:10.1109/COMST.2016.2527741.
[6] KILINC D,AKANO B.An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes[J].IEEE Transactions on Nanotechnology,2013,12(2):129-136.DOI:10.1109/TNA NO.2012.2233212.
[7] GOLDBERG M,DE PITTà M,VOLMAN V,et al.Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks[J].PLOS Computational Biology,2010,6(8):1287-1292.DOI:10.1371/journal.pcbi.1000909.
[8] BARROS M T,BALASUBRAMANIAM S,JENNINGS B.Comparative end-to-end analysis of Ca2+ signaling-based molecular communication in biological tissues[J].IEEE Transactions on Communications,2015,63(12):5128-5142.DOI:10.1109/TCOMM.2015.2487349.
[9] HE Peng,NAKANO T,MAO Yuming,et al.Channel switching in molecular communication networks through calcium signaling[C]//Wireless Communications and Networking Conference.San Francisco:IEEE Press,2017:1-6.DOI:10.1109/WCNC.2017.7925960.
[10] HE Peng,NAKANO T,MAO Yuming,et al.Stochastic channel switching of frequency-encoded signals in molecular communication networks[J].IEEE Communications Letters,2018,22(2):332-335.DOI:10.1109/lcomm.2017.2768537.
[11] 彭木根,艾元,纪晓东.基于扩散的分子通信与身体域纳米网络[J].北京邮电大学学报,2016,39(2):1-9.DOI:10.13190/j.jbupt.2016.02.001.
[12] NIESSEN H,HARZ H,BEDNER P,et al.Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate[J].Cell Science,2000,113(8):1365-1372.
[13] PERACCHIA C.Chemical gating of gap junction channels roles of calcium, pH and calmodulin[J].Biochimicaet Biophysica Acta,2004,1662(1):61-80.DOI:10.1016/j.bbamem.2003.10.020.
[14] NAKANO T,SUDA T,OKAIE Y,et al.Molecular communication among biological nanomachines: A layered architecture and research issues[J].IEEE Transactions on Nanobioscience,2014,13(3):169-197.DOI:10.1109/TNB.2014.2316674.
[15] NAKANO T,KOUJIN T,SUDA T,et al.A locally-induced increase in intracellular Ca2+ propagates cell-to-cell in the presence of plasma membrane Ca2+ ATPase inhibitors in non-excitable cells[J].FEBS Letters,2009,583(22):3593-3599.DOI:10.1016/j.febslet.2009.10.032.
[16] VEASY J,LAI Y,COOMBES S,et al.Complex patterns of subcellular cardiac alternans[J].Journal of Theoretical Biology,2019,478:102-114.DOI:10.1016/j.jtbi.2019.06.016.
[17] KURAN M S,TUGCU T,EDIS B ?.Calcium signaling: Overview and research directions of a molecular communication paradigm[J].IEEE Wireless Communications,2012,19(5):20-27.DOI:10.1109/MWC.2012.6339468.
[18] 何鹏.分子通信信道模型关键技术研究[D].成都:电子科技大学,2018.
[19] HELL C E,PRICE G W,WALL M J,et al.Transforming growth factor beta 1 drives a switch in connexin mediated cell-to-cell communication in tubular cells of the diabetic kidney[J].Cellular Physiology and Biochemistry,2018,45(6):2369-2388.DOI:10.1159/00048818.
[20] 伍宇思,赵燕,罗丹.缝隙连接蛋白与糖尿病血管病变的研究进展[J].南昌大学学报(医学版),2017,57(3):73-77.DOI:10.13764/j.cnki.ncdm.2017.03.019.

备注/Memo

备注/Memo:
收稿日期: 2020-04-02
通信作者: 宋正勋(1967-),男,教授,主要从事分子通信与网络、感测与微纳操控技术的研究.E-mail:zhxsong@cust.edu.cn.
基金项目: 科技部国家重点研发计划项目(2017YFE0112100); 欧盟地平线H2020计划项目(734174)
更新日期/Last Update: 2021-01-20