[1]柯翔敏,施晨昀,陈江,等.60 GHz低损耗宽带的超表面天线阵列[J].华侨大学学报(自然科学版),2020,41(5):654-658.[doi:10.11830/ISSN.1000-5013.201909005]
 KE Xiangmin,SHI Chenyun,CHEN Jiang,et al.60 GHz Low-Lossy Wideband Metasurface Antenna Array[J].Journal of Huaqiao University(Natural Science),2020,41(5):654-658.[doi:10.11830/ISSN.1000-5013.201909005]
点击复制

60 GHz低损耗宽带的超表面天线阵列()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第5期
页码:
654-658
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
60 GHz Low-Lossy Wideband Metasurface Antenna Array
文章编号:
1000-5013(2020)05-0654-05
作者:
柯翔敏1 施晨昀2 陈江1 陈瑞虹1
1. 华侨大学 网络与教育技术中心, 福建 厦门 361021;2. 南京理工大学 电子工程与光电技术学院, 江苏 南京 210000
Author(s):
KE Xiangmin1 SHI Chenyun2 CHEN Jiang1 CHEN Ruihong1
1. Center of Network and Educational Technology, Huaqiao University, Xiamen 361021, China; 2. School of Electronic Engineering and Optical Electronic Technology, Nanjing University of Science and Technology, Nanjing 210000, China
关键词:
超表面 间隙波导 毫米波天线阵列 低损耗宽带
Keywords:
metasurface gap waveguide millimeter wave antenna array low-loss wideband
分类号:
TN820.152
DOI:
10.11830/ISSN.1000-5013.201909005
文献标志码:
A
摘要:
研究一种基于超表面的60 GHz 1×2宽带天线阵列.为降低传输损耗,天线阵列由间隙波导功分器馈电,间隙波导传输线两侧放置电磁带隙结构,能量通过缝隙与顶层超表面耦合,从而向空间辐射.天线阵列安装在Rogers 4350b介质基板上,由超表面辐射器引入的准TM30谐振模式与缝隙辐射单元的本征模式结合,从而拓展天线带宽,改善天线增益.研究结果表明:天线阵列-10 dB |S11| 带宽仿真结果为49.3~65.0 GHz,实测结果为48.5~64.8 GHz,覆盖57.0~64.0 GHz范围的无授权毫米波通信频段;在匹配带宽内,天线的最大增益为11.8 dB,3 dB增益带宽为15%.
Abstract:
A 60 GHz 1×2 gap waveguide coupled feed broadband antenna array based on hypersurface is studied. In order to reduce the transmission loss, the antenna array is fed by an optimized gap waveguide power divider. The electromagnetic band gap structure is placed on both sides of the gap waveguide transmission line, and the energy is coupled with the super surface of the top layer through the gap, so as to radiate into space. The antenna array is mounted on the Rogers 4350b dielectric substrate. The quasi TM30 resonant mode introduced by the hypersurface radiator is combined with the eigenmode of the slot radiating element to improve the bandwidth and gain of the antenna. The research results show that the antenna array -10dB |S11| bandwidth, the simulation results are 49.3 to 65.0 GHz, the measured one ranges from 48.5 to 64.8 GHz, covering 57.0 to 64.0 GHz unauthorized millimeterwave communication band; in the matching bandwidth, the maximum gain of the antenna is 11.8db, and the 3dB gain bandwidth is 15%.

参考文献/References:

[1] XU Junfeng,CHEN Zhining,QING Xianming,et al.Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC[J].IEEE Trans Antennas Propag,2011,59(3):826-832.DOI:10.1109/TAP.2010.2103018.
[2] SUN Ling,SUN Baohua,YUAN Jiangpeng,et al.Low-profile, quasi-omnidirectional substrate integrated waveguide(SIW)multihorn antenna[J].IEEE Antennas Wireless Propag Lett,2016,15:818-821.DOI:10.1109/LAWP.2015.2476346.
[3] MENCARELLI D,MORINI A,PRUDENZANO F,et al.Broadband single-layer slotted array antenna in SIW technology[J].IEEE Antennas Wireless Propag Lett,2016,15:263-265.DOI:10.1109/LAWP.2015.2440334.
[4] LI Yujian,LUK K M.A 60-GHz wideband circularly polarized aperture coupled magneto-electric dipole antenna array[J].IEEE Trans Antennas Propag,2016,64(4):1325-1333.DOI:10.1109/TAP.2016.2537390.
[5] KILDAL P S,ALFONSO E,VALERO-NOGUEIRA A,et al.Local metamaterial-based waveguides in gaps between parallel metal plates[J].IEEE Antennas Wireless Propag Lett,2009,8:84-87.DOI:10.1109/LAWP.2008.2011147.
[6] DADGARPOUR A,SORKHERIZI M S,KISHK A A.Wideband low loss magneto-electric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feed[J].IEEE Trans Antennas Propag,2016,64(12):5094-5101.DOI:10.1109/TAP.2016.2620522.
[7] LIN Fenghan,CHEN Zhining.Low-profile wideband metasurface antennas using characteristic mode analysis[J].IEEE Trans Antennas Propag,2017,65(4):1706-1713.DOI:10.1109/TAP.2017.2671036.
[8] ZHANG Lei,WAN Xiang,LIU Shuo,et al.Realization of low scattering for a high-gain fabry-perot antenna using coding metasurface[J].IEEE Transactions on Antennas and Propagation,2017,65(7):3374-3383.DOI:10.1109/TAP.2017.2700874.
[9] LIN Fenghan,CHEN Zhining.Truncated impedance sheet model for low-profile broadband nonresonant-cell metasurface antennas using characteristic mode analysis[J].IEEE Transactions on Antennas and Propagation,2018,66(10):5043-5051.DOI:10.1109/TAP.2018.2854366.
[10] MORADI A,MOHAJERI F.Side lobe level reduction and gain enhancement of a pyramidal horn antenna in the presence of metasurfaces[J].IET Microwaves, Antennas & Propagation,2018,12(3):295-301.DOI:10.1049/iet-map.2017.0376.
[11] CHEN Ke,YANG Zhongjie,FENG Yijun,et al.Improving microwave antenna gain and bandwidth with phase compensation metasurface[J].AIP Adv,2015,5(6):067152(1-8).DOI: 10.1063/1.4923195.
[12] AL-JOUMAYLY M A,BEHDAD N.Wideband planar microwave lenses using sub-wavelength spatial phase shifters[J].IEEE Trans Antennas Propag,2011,59(12):4542-4552.DOI:10.1109/TAP.2011.2165515.
[13] LIN Fenghan,CHEN Zhining,LIU Wei,et al.A metamaterial-based broadband circularly polarized aperture-fed grid-slotted patch antenna[C]//Proc IEEE Asia-Pacific Conf Antennas Propag(APCAP).Kuta: IEEE Press,2015:353-354.DOI:10.1109/APCAP.2015.7374401.
[14] LIU Wei,CHEN Zhining,QING Xianming.Metamaterial-based low-profile broadband mushroom antenna[J].IEEE Trans Antennas Propag,2014,62(3):1165-1172.DOI:10.1109/TAP.2011.2165515.
[15] CHEN Yikai,WANG Chaofu.Characteristics modes theory and applications in antenna engineering[M].Hoboken:John Wiley & Sons Inc,2015.

备注/Memo

备注/Memo:
收稿日期: 2019-09-04
通信作者: 柯翔敏(1987-),男,工程师,主要从事计算机技术的研究.E-mail:kexiangmin@hqu.edu.cn.
基金项目: 福建省中青年教师科研基金资助项目(JZ180187, JZ180193)
更新日期/Last Update: 2020-09-20