[1]朱亚玲,杨紫薇,高佳慧,等.三七-白及药对作用机制的网络药理学分析[J].华侨大学学报(自然科学版),2020,41(4):501-509.[doi:10.11830/ISSN.1000-5013.201910048]
 ZHU Yaling,YANG Ziwei,GAO Jiahui,et al.Network Pharmacology Analysis of Action Mechanism of PanaxNotoginseng-Bletillastriata[J].Journal of Huaqiao University(Natural Science),2020,41(4):501-509.[doi:10.11830/ISSN.1000-5013.201910048]
点击复制

三七-白及药对作用机制的网络药理学分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第4期
页码:
501-509
栏目:
出版日期:
2020-07-20

文章信息/Info

Title:
Network Pharmacology Analysis of Action Mechanism of PanaxNotoginseng-Bletillastriata
文章编号:
1000-5013(2020)04-0501-09
作者:
朱亚玲 杨紫薇 高佳慧 陈建美 陈璐 孔雅珍 刁勇
华侨大学 医学院, 福建 泉州 362021
Author(s):
ZHU Yaling YANG Ziwei GAO Jiahui CHEN JianmeiCHEN Lu KONG Yazhen DIAO Yong
School of Medicine, Huaqiao University, Quanzhou 362021, China
关键词:
三七 白及 网络药理学 活性成分 作用机制
Keywords:
PanaxNotoginseng Bletillastriata network pharmacology active ingredients action mechanism
分类号:
R285.5
DOI:
10.11830/ISSN.1000-5013.201910048
文献标志码:
A
摘要:
通过网络药理学的方法,研究三七-白及药对在疾病治疗过程中潜在的药理作用机制.采用TCMSP数据库筛选三七-白及药对的活性成分和作用靶点,并用Uniprot数据库校正靶点信息得到靶点基因,利用CTD数据库获得靶点基因相关的疾病类型,通过STRING数据库构建靶点蛋白相互作用网络,分析得到核心蛋白,运用DAVID数据库富集分析靶点基因参与的基因本体论(GO)生物学过程及京都基因与基因百科全书(KEGG)通路.共筛选得到17个活性成分,涉及193个作用靶点.结果表明:槲皮素、β-谷甾醇和豆甾醇的作用靶点数目最多;靶点基因与35类疾病相关,主要包括癌症、神经系统疾病、心血管疾病等;蛋白相互作用网络分析得到核心蛋白AKT1,MAPK1,c-Jun,P53,TNF等;靶点基因主要涉及药物反应,RNA聚合酶Ⅱ启动子转录的正调控等91条GO生物学过程,KEGG通路显著富集到癌症通路、乙型肝炎等66条通路,与前述疾病分析结果相符.
Abstract:
The potential pharmacological mechanism of PanaxNotoginseng-Bletillastriata in the course of disease treatment was studied by means of network pharmacology. TCMSP database was used to screen active ingredients and targets of PanaxNotoginseng- Bletillastriata, and Uniprot database was used to correct target information to obtain target genes. CTD database was used to obtain the disease types related to target genes. Target protein interaction network was constructed by STRING database, and core protein was obtained by analysis. DAVID database was used to enrich and analyze Gene Ontology(GO)biological processes and Kyoto Encycbopedia of Genes and Genomes(KEGG)pathways involved in target genes. A total of 17 active ingredients were screened, involving 193 targets. The results showed that, quercetin, beta-sitosterol and stigmasterol were the most active targets. Target genes were associated with 35 diseases, mainly including cancer, nervous system diseases and cardiovascular diseases. Core proteins such as AKT1, MAPK1, c-Jun, P53 and TNF were obtained by network analysis. Target genes mainly involved 91 GO biological processes such as drug reaction and positive regulation of RNA polymerase Ⅱ promoter transcription. KEGG pathway was most significantly enriched in 66 pathways, such as cancer pathway and hepatitis B pathway, which is consistent with the analysis of the aforementioned diseases.

参考文献/References:

[1] 国家药典委员会.中华人民共和国药典:一部[M].北京:中国医药科技出版社,2015.
[2] 王国强.全国中草药汇编[M].北京:人民卫生出版社,2014.
[3] XU Peng,LI Shasha,TIAN Ruimin,et al.Metabonomic analysis of the therapeutic effects of Chinese medicine sanqi oral solution on rats with exhaustive exercise[J].Front Pharmacol,2019,10:704.DOI:10.3389/fphar.2019.00704.
[4] DONG Yan,DUAN Lian,CHEN Hengwen,et al.Network pharmacology-based prediction and verification of the targets and mechanism for panax notoginseng saponins against coronary heart disease[J].Evid Based Complement Alternat Med,2019,2019:6503752.DOI:10.1155/2019/6503752.
[5] HE Xirui,WANG Xiaoxiao,FANG Jiacheng,et al.Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities[J].J Ethnopharmacol,2017,195:20-38.DOI:10.1016/j.jep.2016.11.026.
[6] CHEN Ziyan,CHENG Lizeng,HE Yichen,et al.Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review[J].Int J Biol Macromol,2018,120(Pt B):2076-2085.DOI:10.1016/j.ijbiomac.2018.09.028.
[7] 马世宏,金玲,揭邃,等.白芨-丹皮酚包合物在化妆品中的应用研究[J].日用化学品科学,2009,32(6):30-33.DOI:10.13222/j.cnki.dc.2009.06.007.
[8] 王灯节,狄留庆,康安,等.白及多糖配伍对三七总皂苷中10种成分药动学的影响[J].中草药,2017,48(4):737-746.DOI:10.7501/j.issn.0253-2670.2017.04.020.
[9] NUESCH E,HAUSER W,BERNARDY K,et al.Comparative efficacy of pharmacological and non-pharmacological interventions in fibromyalgia syndrome: Network meta-analysis[J].Ann Rheum Dis,2013,72(6):955-962.DOI:10.1136/annrheumdis-2011-201249.
[10] HAO Dacheng,XIAO Peigen.Network pharmacology: A rosetta stone for traditional Chinese medicine[J].Drug Dev Res,2014,75(5):299-312.DOI:10.1002/ddr.21214.
[11] HOPKINS A L.Network pharmacology: The next paradigm in drug discovery[J].Nat Chem Biol,2008,4(11):682-690.DOI:10.1038/nchembio.118.
[12] LI Shao,ZHANG Bo.Traditional Chinese medicine network pharmacology: Theory, methodology and application[J].Chin J Nat Med,2013,11(2):110-120.DOI:10.1016/S1875-5364(13)60037-0.
[13] YUAN Haidan,MA Qianqian,CUI Heying,et al.How can synergism of traditional medicines benefit from network pharmacology?[J].Molecules,2017,22(7):1135.DOI:10.3390/molecules22071135.
[14] BOEZIO B,AUDOUZE K,DUCROT P,et al.Network-based approaches in pharmacology[J].Molecular Informatics,2017,36(10):1700048.DOI:10.1002/minf.201700048.
[15] RU Jinlong,LI Peng,WANG Jinan,et al.TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J].J Cheminform,2014,6:13.DOI:10.1186/1758-2946-6-13.
[16] PUNDIR S,MARTIN M J,O’DONOVAN C.Uniprot tools[J].Curr Protoc Bioinformatics,2016,53:1.29.1-1.29.15.DOI:10.1002/0471250953.bi0129s53.
[17] SU Gang,MORRIS J H,DEMCHAK B,et al.Biological network exploration with Cytoscape 3[J].Curr Protoc Bioinformatics,2014,47:8.13.1-8.13.24.DOI:10.1002/0471250953.bi0813s47.
[18] DAVIS A P,GRONDIN C J,JOHNSON R J,et al.The Comparative toxicogenomics database: Update 2019[J].Nucleic Acids Res,2019,47(D1):D948-D954.DOI:10.1093/nar/gky868.
[19] SZKLARCZYK D,MORRIS J H,COOK H,et al.The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible[J].Nucleic Acids Res,2017,45(D1):D362-D368.DOI:10.1093/nar/gkw937.
[20] HUANG Dawei,SHERMAN B T,LEMPICKI R A.Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists[J].Nucleic Acids Res,2009,37(1):1-13.DOI:10.1093/nar/gkn923.
[21] LIU Ailin,DU Guanhua.Network pharmacology: New guidelines for drug discovery[J].Yao Xue Xue Bao,2010,45(12):1472-1477.DOI:10.16438/j.0513-4870.2010.12.010.
[22] D’ANDREA G.Quercetin: A flavonol with multifaceted therapeutic applications?[J].Fitoterapia,2015,106:256-271.DOI:10.1016/j.fitote.2015.09.018.
[23] KHAN F,NIAZ K,MAQBOOL F,et al.Molecular targets underlying the anticancer effects of quercetin: An update[J].Nutrients,2016,8(9):529.DOI:10.3390/nu8090529.
[24] GUPTA A,BIRHMAN K,RAHEJA I,et al.Quercetin: A wonder bioflavonoid with therapeutic potential in disease management[J].Asian Pacific Journal of Tropical Disease,2016,6(3):248-252.DOI:10.1016/S2222-1808(15)61024-6.
[25] MUKHOPADHYAY P,PRAJAPATI A K.Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers-a review[J].Rsc Advances,2015,5(118):97547-97562.DOI:10.1039/c5ra18896b.
[26] KASHYAP D,MITTAL S,SAK K,et al.Molecular mechanisms of action of quercetin in cancer: Recent advances[J].Tumour Biol,2016,37(10):12927-12939.DOI:10.1007/s13277-016-5184-x.
[27] MASSI A,BORTOLINI O,RAGNO D,et al.Research progress in the modification of quercetin leading to anticancer agents[J].Molecules,2017,22(8):1270.DOI:10.3390/molecules22081270.
[28] KIM S H,YOO E S,WOO J S,et al.Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation[J].Eur J Pharmacol,2019,860:172568.DOI:10.1016/j.ejphar.2019.172568.
[29] 孙玉成,刘晓巍,片光哲.β-谷甾醇诱导人胃癌细胞自噬与凋亡的作用及机制研究[J].中国医师杂志,2019,21(6):866-871.DOI:10.3760/cma.j.issn.1008-1372.2019.06.015.
[30] 林明珠,赵岩,蔡恩博,等.β-谷甾醇对H22荷瘤小鼠体内抗肿瘤作用[J].中国公共卫生,2017,33(12):1797-1800.DOI:10.11847 /zgggws2017-33-12-31.
[31] FENG Simin,DAI Zhuqing,LIU Anna,et al.Beta-sitosterol and stigmasterol ameliorate dextran sulfate sodium-induced colitis in mice fed a high fat western-style diet[J].Food Funct,2017,8(11):4179-4186.DOI:10.1039/c7fo00375g.
[32] KIM Y S,LI X F,KANG K H,et al.Stigmasterol isolated from marine microalgae navicula incerta induces apoptosis in human hepatoma HepG2 cells[J].BMB Rep,2014,47(8):433-438.DOI:10.5483/bmbrep.2014.47.8.153.
[33] CHEN Liang,KANG Qiaohui,CHEN Ying,et al.Distinct roles of Akt1 in regulating proliferation, migration and invasion in HepG2 and HCT 116 cells[J].Oncol Rep,2014,31(2):737-744.DOI:10.3892/or.2013.2879.
[34] BROLIH S,PARKS S K,VIAL V,et al.AKT1 restricts the invasive capacity of head and neck carcinoma cells harboring a constitutively active PI3 kinase activity[J].BMC Cancer,2018,18(1):249.DOI:10.1186/s12885-018-4169-0.
[35] LI Chiawei,XIA Weiya,LIM S O,et al.AKT1 Inhibits epithelial-to-mesenchymal transition in breast cancer through phosphorylation-dependent twist1 degradation[J].Cancer Res,2016,76(6):1451-1462.DOI:10.1158/0008-5472.CAN-15-1941.
[36] HUTCHINSON J N,JIN J,CARDIFF R D,et al.Activation of Akt-1(PKB-alpha)can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion[J].Cancer Res,2004,64(9):3171-3178.DOI:10.1158/0008-5472.CAN-03-3465.
[37] LI Wenfeng,LIANG Jingjing,ZHANG Zhechao,et al.MicroRNA-329-3p targets MAPK1 to suppress cell proliferation,migration and invasion in cervical cancer[J].Oncol Rep,2017,37(5):2743-2750.DOI:10.3892/or.2017.5555.
[38] JIANG Hui,LIANG Min,JIANG Yangqiong,et al.The lncRNA TDRG1 promotes cell proliferation, migration and invasion by targeting miR-326 to regulate MAPK1 expression in cervical cancer[J].Cancer Cell Int,2019,19:152.DOI:10.1186/s12935-019-0872-4.
[39] CHEN Yan,ZHU Guoqing,LIU Ya,et al.O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer[J].Cellular signalling,2019,63:1-11.DOI:10.1016/j.cellsig.2019.109384.
[40] ZHANG Di,ZHOU Qian,HUANG Dandan,et al.ROS/JNK/c-Jun axis is involved in oridonin-induced caspase-dependent apoptosis in human colorectal cancer cells[J].Biochemical and Biophysical Research Communications,2019,513(3):594-601.DOI:10.1016/j.bbrc.2019.04.011.
[41] LEROY B,ANDERSON M,SOUSSI T.TP53 mutations in human cancer: Database reassessment and prospects for the next decade[J].Hum Mutat,2014,35(6):672-688.DOI:10.1002/humu.22552.
[42] BOUAOUN L,SONKIN D,ARDIN M,et al.TP53 variations in human cancers: New lessons from the IARC TP53 database and genomics data[J].Hum Mutat,2016,37(9):865-876.DOI:10.1002/humu.23035.
[43] DEORA A,HEGDE S,LEE J,et al.Transmembrane TNF-dependent uptake of anti-TNF antibodies[J].MAbs,2017,9(4):680-695.DOI:10.1080/19420862.2017.1304869.
[44] VARFOLOMEEV E,VUCIC D.Intracellular regulation of TNF activity in health and disease[J].Cytokine,2018,101:26-32.DOI:10.1016/j.cyto.2016.08.035.
[45] 李新悦,吴玉梅,任静,等.基于UPLC-MS/MS联用微透析技术的三七总皂苷在帕金森病小鼠模型中的药动学和药效学研究[J].中草药,2019,50(13):3119-3126.DOI:10.7501/j.issn.0253-2670.2019.13.018.
[46] JIN Siyi,LI Dangqing,LU Shan,et al.Ethanol extracts of Panax notoginseng increase lifespan and protect against oxidative stress in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway[J].Journal of Functional Foods,2019,58:218-226.DOI:10.1016/j.jff.2019.04.031.
[47] YUE Long,WANG Wang,WANG Yan,et al.Bletilla striata polysaccharide inhibits angiotensin Ⅱ-induced ROS and inflammation via NOX4 and TLR2 pathways[J].International Journal of Biological Macromolecules,2016,89:376-388.DOI:10.1016/j.ijbiomac.2016.05.002.
[48] ZHONG Hua,WU Hao,BAI He,et al.Panax notoginseng saponins promote liver regeneration through activation of the PI3K/AKT/mTOR cell proliferation pathway and upregulation of the AKT/Bad cell survival pathway in mice[J].BMC Complement Altern Med,2019,19:122.DOI:10.1186/s12906-019-2536-2.
[49] DONG Yan,CHEN Hengwen,GAO Jialiang,et al.Bioactive ingredients in chinese herbal medicines that target non-coding rnas: Promising new choices for disease treatment[J].Front Pharmacol,2019,10:515.DOI:10.3389/fphar.2019.00515.
[50] 陈江,张兵,冯燕,等.白及提取物对流感病毒感染MDCK细胞基因表达的干预研究[J].浙江中医药大学学报,2019,43(5):481-492.DOI:10.16466/j.issn1005-5509.2019.05.022.
[51] 陈思思,吴蓓,谭婷,等.白及多糖BSP-1的分离纯化、结构表征及抗肿瘤活性研究[J].中草药,2019,50(8):1921-1926.DOI:10.7501/j.issn.0253-2670.2019.08.022.

备注/Memo

备注/Memo:
收稿日期: 2019-10-28
通信作者: 刁勇(1967-),男,教授,博士,博士生导师,主要从事基因药物的研究.E-mail:diaoyong@hqu.edu.cn.
基金项目: 福建省科技计划高校产学合作项目(2018Y4009); 福建省泉州市桐江学者特聘教授奖励计划资助项目(Z17X0232); 福建省泉州市科技计划高层次人才项目(2018C042R); 华侨大学科研基金资助项目(17BS501)http://www.hdxb.hqu.
更新日期/Last Update: 2020-07-20