[1]张媛媛,程远达,杨晓,等.内嵌百叶板换热器的壳程流动与传热特性[J].华侨大学学报(自然科学版),2020,41(4):493-500.[doi:10.11830/ISSN.1000-5013.202001026]
 ZHANG Yuanyuan,CHENG Yuanda,YANG Xiao,et al.Flow and Heat Transfer Characteristics of Shell Side of Embedded Louver Heat Exchanger[J].Journal of Huaqiao University(Natural Science),2020,41(4):493-500.[doi:10.11830/ISSN.1000-5013.202001026]
点击复制

内嵌百叶板换热器的壳程流动与传热特性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第4期
页码:
493-500
栏目:
出版日期:
2020-07-20

文章信息/Info

Title:
Flow and Heat Transfer Characteristics of Shell Side of Embedded Louver Heat Exchanger
文章编号:
1000-5013(2020)04-0493-08
作者:
张媛媛1 程远达1 杨晓2 罗成1 贾捷1
1. 太原理工大学 土木工程学院, 山西 太原 030024;2. 太原理工大学 电气与动力工程学院, 山西 太原 030024
Author(s):
ZHANG Yuanyuan1 CHENG Yuanda1 YANG Xiao2 LUO Cheng1 JIA Jie1
1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
内嵌百叶板换热器 压降 传热系数 壳程
Keywords:
embedded louver heat exchanger pressure drop heat transfer coefficient shell side
分类号:
TQ021.3
DOI:
10.11830/ISSN.1000-5013.202001026
文献标志码:
A
摘要:
针对普通弓形板换热器折流板后易出现流动死区的现象,对折流板进行优化设计,并提出一种内嵌百叶板换热器.应用计算流体力学软件Fluent得到内嵌百叶板换热器壳程流场分布,并与普通弓形板换热器进行对比,分析百叶角度与百叶数量对换热器性能的影响.结果表明:与普通弓形板换热器相比,百叶可引流部分流体通过折流板,使内嵌百叶板换热器内流动死区面积明显减小,流场分布更加均匀,具有明显的减小壳程流体压降及提高壳程传热系数的作用;在研究范围内,当百叶角度为60°,百叶数量为每组4片时,换热器的综合性能最佳,综合评价因子可达1.76~2.05.
Abstract:
Aiming at the phenomenon that the flow dead zone is easy to form behind the baffle plate of the common bow plate heat exchanger, the optimization design of the baffle plate was carried out, and an embedded louver heat exchanger was proposed. The computational fluid dynamics software Fluent was used to obtain the flow field distribution of shell side of the embedded louver heat exchanger, which was compared with the common bow plate heat exchanger. The effects of louver angle and number on the performance of the heat exchanger were analyzed. The results show that compared with the common bow plate heat exchanger, the louver guides part of the fluid through the baffle plate, so that the area of the dead zone in the embedded louver heat exchanger is significantly reduced, and the flow field distribution is more uniform. The effect of reducing the shell-side fluid pressure and increasing the shell-side heat transfer coefficient is obvious. In the scope of study, when the louver angle is 60° and the number is 4 pieces per group, the comprehensive performance of the heat exchanger is the best, and the comprehensive evaluation factor can reach to 1.76-2.05.

参考文献/References:

[1] HASSAN H,MEHDI N,SIMA A M.A comparative study on the shell and tube and gasket-plate heat exchangers: The economic viewpoint[J].Applied Thermal Engineering,2016,92(10):271-282.DOI:10.1016/j.applthermaleng.2015.08.110.
[2] STHLK P.Different strategies to improve industrial heat exchanger[J].Heat Transfer Engineering,2002,23(6):36-48.DOI:10.1080/01457630290098673.
[3] 华媛.不同折流板管壳式换热器数值模拟[D].青岛:青岛科技大学,2014.
[4] 郭震,郎红方,周帼彦,等.三叶孔板换热器壳程传热与压降[J].化工学报,2014,65(10):3811-3819.DOI:10.3969/j.issn.0438-1157.2014.10.010.
[5] 姚瑶,韩东,罗朝嘉,等.梅花形孔板换热器壳程流动与换热特性模拟[J].能源化工,2017,38(1):85-90.
[6] 王翠华,张平,吴剑华,等.网状孔板纵向流换热器壳程流体流动及换热的三维数值模拟[J].化工进展,2011,30(9):1932-1936.DOI:10.16085/j.issn.1000-6613.2011.09.002.
[7] MUKHERJEE R.Use double-segmental baffles in the shell-and-tube heat exchangers[J].Chemical Engineering Progress,1992,88(11):47-52.DOI:10.1016/S1872-5791(07)60010-4.
[8] 牛伟.双弓形板换热器壳程流动与传热数值模拟[D].西安:西安石油大学,2016.
[9] RATNASAMY F,孙重春.带圆盘-圆环形折流板的换热器设计[J].化工设备设计,1988,13(2):55-56,58.
[10] 刘乾,刘阳子.高效节能换热器概述[J].石油和化工节能,2009,6:8-12.
[11] 钱才富,高宏宇,孙海阳.曲面弓形折流板换热器壳程流体流动与传热[J].化工学报,2011,62(5):1233-1238.DOI:10.3969/j.issn.0438-1157.2011.05.008.
[12] YOU Yonghua,ZHANG Fahui,FAN Aiwu,et al.A numerical study on the turbulent heat transfer enhancement of rod baffle heat exchanger with staggered tubes supported by round rods with arc cuts[J].Applied Thermal Engineering,2015,76(3):220-232.DOI:10.1016/j.applthermaleng.2014.11.048.
[13] 董其伍,刘敏珊,赵晓冬.杆栅支撑纵流壳程换热器壳侧流体流动与传热的数值模拟[J].化工学报,2006,57(5):1073-1078.DOI:10.3321/j.issn.0438-1157.2006.05.007.
[14] 古新,罗元坤,熊晓朝,等.扭转流换热器结构参数对流场和温度场的影响[J].化工学报,2018,69(8):3390-3397.DOI:10.11949/j.issn.0438-1157.20171612.
[15] 李亚子,雷勇刚,吕永康,等.斜百叶片支撑多管束受限外流传热和阻力特性[J].高校化学工程学报,2017,31(3):579-585.DOI:10.3969/j.issn.1003-9015.2017.00.029.
[16] 罗富强.扁管管壳式换热器数值模拟研究[D].哈尔滨:哈尔滨工程大学,2010.
[17] PENG B,WANG Q W,ZHANG C,et al.An experimental study of shell-and-tube heat exchangers with continuous helical baffles[J].Journal of Heat Transfer,2007,129(10):1425-1426.DOI:10.1115/1.2754878.
[18] SUN Haitao,CHEN Yaping,WU Jiafeng.Shell-side heat transfer performance of circumferential overlap trisection helical baffle heat exchangers[J].Journal of Chemical Industry and Engineering,2012,63(5):1360-1366.DOI:10.3969/j.issn.0438-1157.2012.05.005.
[19] 王明超.三分螺旋折流板电加热器流动和传热性能研究[D].南京:东南大学,2016.
[20] WANG Simin,WEN Jian.Experimental investigation on heat transfer enhancement of a heat exchanger with helical baffles through blockage of triangle leakage zones[J].Applied Thermal Engineering,2014,67(1):122-130.DOI:10.1016/j.applthermaleng.2014.03.017.
[21] LUTCHA J,NEMCANSKY Y J.Performance improvement of tubular heat exchangers by helical baffles[J].Chemical Engineering Research & Design,1990,68(3):263-270.
[22] 许晓红.双壳程外螺旋内斜百叶片管壳式换热器的传热和阻力性能研究[D].太原:太原理工大学,2018.
[23] KAPALE U C,CHAND S.Modeling for shell-side pressure drop for liquid flow in shell-and-tube heat exchanger[J].International Journal of Heat and Mass Transfer,2005,49(3):601-610.DOI:10.1016/j.ijheatmasstransfer.2005.08.022.

备注/Memo

备注/Memo:
收稿日期: 2020-01-20
通信作者: 程远达(1985-),男,教授,博士,主要从事建筑节能方面的研究.E-mail:chengyuanda@tyut.edu.cn.
基金项目: 国家重点研发计划项目(2018YFD1100701); 山西省重点研发计划项目(201803D121105)
更新日期/Last Update: 2020-07-20