[1]李科宏,田琦,李琦晟,等.喷气增焓空气源耦合地源热泵系统的性能优化[J].华侨大学学报(自然科学版),2020,41(3):348-356.[doi:10.11830/ISSN.1000-5013.201906016]
 LI Kehong,TIAN Qi,LI Qisheng,et al.Performance Optimization of Jet-Enhanced Air Source Coupling Ground Source Heat Pump System[J].Journal of Huaqiao University(Natural Science),2020,41(3):348-356.[doi:10.11830/ISSN.1000-5013.201906016]
点击复制

喷气增焓空气源耦合地源热泵系统的性能优化()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第3期
页码:
348-356
栏目:
出版日期:
2020-05-20

文章信息/Info

Title:
Performance Optimization of Jet-Enhanced Air Source Coupling Ground Source Heat Pump System
文章编号:
1000-5013(2020)03-0348-09
作者:
李科宏 田琦 李琦晟 李蓉
太原理工大学 环境科学与工程学院, 山西 晋中 030600
Author(s):
LI Kehong TIAN Qi LI Qisheng LI Rong
College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
关键词:
耦合模型 热泵系统模拟 系统优化 喷气增焓
Keywords:
coupling model heat pump systems simulation system optimization jet-enhanced air source
分类号:
TU831.4
DOI:
10.11830/ISSN.1000-5013.201906016
文献标志码:
A
摘要:
针对山西省太原地区地源热泵应用导致土壤热平衡难以满足的问题,在传统空气源耦合地源热泵系统的基础上,设计一套新的喷气增焓空气源耦合地源热泵系统,并建立相关的数学模型.以太原地区某一建筑的应用为例,利用DeST软件模拟计算案例建筑全年冷、热负荷需求特征,利用TRNSYS软件仿真分析常规地源热泵、空气源热泵、喷气增焓空气源耦合地源热泵系统的性能,并对新的喷气增焓空气源耦合地源热泵系统性能进行优化.结果表明:案例建筑全年累计冷、热负荷比为1.57∶1.00,应用常规地源热泵后,土壤初始温度和最高温度逐年下降,10 a后平均温度降幅14.3%;与常规地源热泵系统比较,喷气增焓空气源耦合地源热泵系统初投资节省12.5%,节省25.8%的打井数,节省33.9%的运行费和15.9%的总费用,可解决埋管区土壤冷、热不平衡、埋管面积不足的问题,夏季性能系数(COP)提升26.2%,冬季制热性能系数(COPh)提升12.3%.
Abstract:
Aim at the problem of soil heat balance in the application of ground source heat pump in Taiyuan area, Shanxi Province, a new jet-enhanced air source coupling ground source heat pump system was designed based on traditional air source coupling ground source heat pump system, and its related mathematical model was established. Taking the application of a certain building in Taiyuan area as an example, DeST software was used to simulate and calculate the annual heating and cooling load demand characteristics of the case construction. The performance of conventional ground source heat pump, air source heat pump and new dual-source coupling system was simulated by TRNSYS software. Finally, the performance of the dual-source coupling heat pump system was optimized. The result shows that the cumulative heating and cooling load ratio of the case building is 1.57∶1.00. After the application of the conventional ground source heat pump, the initial temperature and maximum temperature of the soil decrease year by year, and average temperature decreases by 14.3% after 10 years. Compared with the conventional ground source heat pump system, the initial in vestm-ent of the new dual-source coupling system saves 12.5%, the number of wells saves 25.8%, operating cost saves 33.9%, and total cost saves 15.9%. Therefore, the new system solves problem of unbalanced soil heating and cooling load and insufficient buried pipe area in the buried pipe area effectively. The summer performance coefficient(COP)increases by 26.2%,and the winter collection coefficient(COPh)increases by 12.3%.

参考文献/References:

[1] 李敏,钱伯章.能源需求快速增长背后现危机: 2019年世界能源统计年鉴解读[J].中国石油和化工经济分析,2019(8):51-55..
[2] 程薇.BP公司在2019年世界能源统计年鉴[J].石油炼制与化工,2019,50(9):96.
[3] 韩静洋,张强武,马坤茹.季节性蓄热的太阳能/地源热泵耦合系统研究[J].供热制冷,2019(6):38-41.DOI:10.7666/d.y1695635.
[4] 马最良.替代寒冷地区传统供暖的新型热泵供暖方式的探讨[C]//流体机械.合肥:[出版者不详],2001:35-37.
[5] 马龙.喷气增焓双级耦合热泵系统设计与性能分析[D].衡阳:南华大学,2016.
[6] 天韵太阳科技发展有限公司.浅析双级耦合热泵采暖系统技术与工程应用[J].供热制冷,2019(6):35-37.
[7] PARDO N,MONTERO Á,MARTOS J,et al.Optimization of hybrid-ground coupled and air source-heat pump systems in combination with thermal storage[J].Applied Thermal Engineering,2010,30(8/9):1073-1077.DOI:10.1016/j.applthermaleng.2010.01.015.
[8] NAM Y J,OOKA R,SJIBA Y.Development of dual-source hybrid heat pump system using groundwater and air[J].Energy and Buildings,2010,42(6):909-916.DOI:10.1016/j.enbuild.2009.12.013.
[9] VACLAV K,JIRI M,ROBERT C,et al.Exterior thermal insulation systems for AAC building envelopes: Computational analysis aimed at increasing service life[J].Energy and Buildings,2012,47:84-90.DOI:10.1016/j.enbuild.2011.11.030.
[10] 杨旭冬.合肥地区某商场建筑自然通风对建筑能耗影响及节能潜力研究[D].合肥:安徽建筑大学,2019.
[11] 马佳慧,王美萍,田琦.不同散热末端耦合运行调节方法[J].华侨大学学报(自然科学版),2019,40(2):209-214.DOI:10.11830/ISSN.1000-5013.201808033.
[12] 高文龙,官燕玲.基于TRNSYS模拟的地埋管换热效果影响因素分析[J].节能,2019,38(3):46-48.DOI:10.3969/j.issn.1004-7948.2019.03.017.
[13] 王春香.太原南站冷热源系统设计[C]//全国暖通空调制冷2010年学术年会论文集.杭州:[出版者不详],2010:2109-2113.
[14] 朱宝仁.民航华北局山西办公楼分散式地源热泵空调系统设计运行分析[J].中国勘察设计,2011(7):68-70.
[15] 杨绍阳.太阳能季节性蓄热与地源热泵复合供热系统应用与模拟分析[D].济南:山东建筑大学,2015.
[16] 董旭,田琦,黎珍.基于低温空气含湿量的太阳能耦合空气源热泵热水系统性能分析[J].制冷与空调,2018,18(10):72-76,82.DOI:10.3969/j.issn.1009-8402.2018.10.015.
[17] 黎珍,田琦,董旭.太原地区太阳能耦合空气源热泵一体化热水系统性能分析[J].华侨大学学报(自然科学版),2017,38(5):670-675.DOI:10.11830/ISSN.1000-5013.201612014.

备注/Memo

备注/Memo:
收稿日期: 2019-06-17
通信作者: 田琦(1966-),男,教授,博士,主要从事可再生能源利用及建筑节能新技术的研究.E-mail:412559908@qq.com.
基金项目: “十二五”国家科技支撑计划项目(2012BAJ04B02)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2020-05-20