参考文献/References:
[1] YANG Jianchao,WRIGHT J,HUANG T,et al.Image super-resolution as sparse representation of raw image patches[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Anchorage:IEEE Press,2008:1-8.DOI:10.1109/CVPR.2008.4587647.
[2] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//International Conference on Curves and Surfaces.Avignon:DBLP,2010:711-730.DOI:10.1007/978-3-642-27413-8_47.
[3] PATI Y C,REZAIIFAR R,KRISHNAPRASAD P S.Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[C]//Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.Pacific Grove:IEEE Press,1993:40-44.DOI:10.1109/ACSSC.1993.342465.
[4] NAZZAL M,OZKARAMANLI H.Wavelet domain dictionary learning-based single image superresolution[J].Signal, Image and Video Processing,2015,9:1491-1501.DOI:10.1007/s11760-013-0602-7.
[5] CHANG Hong,YEUNG D,XIONG Yimin.Super-resolution through neighbor embedding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Press,2004:275-282.DOI:10.1109/CVPR.2004.1315043.
[6] DONG Weisheng,ZHANG Lei,SHI Guangming,et al.Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J].IEEE Transactions Image Processing,2011,20:1838-1857.DOI:10.1109/TIP.2011.2108306.
[7] EFROS A A,LEUNG T K.Texture synthesis by non-parametric sampling[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision.Kerkyra:IEEE Press,2002:1033-1038.DOI:10.1109/ICCV.1999.790383.
[8] CHEN Honggang,HE Xiaohai,TENG Qizhi,et al.Single image super resolution using local smoothness and nonlocal self-similarity priors[J].Signal Processing Image Communication,2016,43:68-81.DOI:10.1016/j.image.2016.01.007.
[9] DONG Weisheng,ZHANG Lei,LUKAC R,et al.Sparse representation based image interpolation with nonlocal autoregressive modeling[J].IEEE Transactions on Image Processing,2013,22(4):1382-1394.DOI:10.1109/TIP.2012.2231086.
[10] HUANG Detian,HUANG Weiqin,YUAN Zhenguo,et al.Image super-resolution algorithm based on an improved sparse autoencoder[J].Informtaion,2018,9(1):1-17.DOI:10.3390/info9010011.
[11] WU Xiaomin,FAN Jiulun,XU Jian,et al.Wavelet domain multidictionary learning for single image super-resolution[J].Journal of Electrical and Computer Engineering,2015,2015:1-12.DOI:10.1155/2015/526508.
[12] AYAS S,EKINCI M.Single image super resolution based on sparse representation using discrete wavelet transform[J].Multimedia Tools and Applications,2018,77:16685-16698.DOI:10.1007/s11042-017-5233-5.
[13] 王相海,赵晓阳,毕晓昀,等.小波域多角度轮廓模板变分模型的单幅图像超分辨率重建[J].电子学报,2018,46(9):2256-2262.DOI:10.3969/j.issn.0372-2112.2018.09.030.
[14] PLENGE E,POOT D H J,BERNSEN M,et al.Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time[J].Magnetic Resonance in Medicine,2012,68(6):1983-1993.DOI:10.1002/mrm.24187.
[15] FENG Shi,CHENG Jian,WANG Li,et al.LRTV: MR image super-resolution with low-rank and total variation regularizations[J].IEEE Transactions on Medical Imaging,2015,34(12):2459-2466.DOI:10.1109/TMI.2015.2437894.
[16] AHMADI K,SALARI E.Edge-preserving MRI super resolution using a high frequency regularization technique[C]//2015 IEEE Signal Processing in Medicine and Biology Symposium.Philadelphia:IEEE Press,2016:1-5.DOI:10.1109/SPMB.2015.7405429.
[17] ZHENG Hong,QU Xiaobo,BAI Zhengjian,et al.Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity[J].BMC Medical Imaging,2017,17(1):1-13.DOI:10.1186/s12880-016-0176-2.
[18] LIANG Zifei,HE Xiaohai,TENG Qizhi,et al.3D MRI image super-resolution for brain combining rigid and large diffeomorphic registration[J].IET Image Processing,2017,11(12):1291-1301.DOI:10.1049/iet-ipr.2017.0517.
[19] ZHENG Hong,ZENG Kun,GUO Di,et al.Multi-contrast brain MRI image super-resolution with gradient-guided edge enhancement[J].IEEE Access,2018,6:57856-57867.DOI:10.1109/ACCESS.2018.2873484.
[20] ZHANG Yongqin,SHI Feng,CHENG Jian,et al.Longitudinally guided super-resolution of neonatal brain magnetic resonance images[J].IEEE Transactions on Cybernetics,2019,49(2):662-674.DOI:10.1109/TCYB.2017.27861 61.
[21] PHAM C H,AURELIEN D,RONAN F,et al.Brain MRI super-resolution using deep 3D convolutional networks[C]//14th IEEE International Symposium on Biomedical Imaging.Melbourne:IEEE Press,2017:197-200.DOI:10.1109/ISBI.2017.7950500.
[22] SHI Jun,LI Zheng,WANG Chaofeng,et al.MR image super-resolution via wide residual networks with fixed skip connection[J].IEEE Journal of Biomedical and Health Informatics,2019,23(3):1129-1140.DOI:10.1109/JBHI.2018.2843819.
[23] CAI Jianfeng,OSHER S,SHEN Zuowei.Split Bregman methods and frame based image restoration[J].Multiscale Modeling and Simulation,2009,8(2):337-369.DOI:10.1137/090753504.
[24] YANG Jianchao,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.DOI:10.1109/TIP.2010.2050625.
[25] TIMOFTE R,DE V,GOOL L V.Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision.Sydney:IEEE Press,2013:1920-1927.DOI:10.1109/ICCV.2013.241.
[26] TTIMOFTE R, DE V, GOOL L V.A+: Adjusted anchored neighborhood regression for fast super-resolution [C]//Asian Conference on Computer Vision.Cham:Springer,2015:111-126.DOI:10.1007/978-3-319-16817-3_8.
[27] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//BMVC 2012-Electronic Proceedings of the British Machine Vision Conference.Surrey:BMVA Press,2012:1-10.DOI:10.5244/C.26.135.
[28] MARTIN D,CHARLESS F,DORON T,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the IEEE International Conference on Computer Vision.Vancouver:IEEE Press,2014:416-423.DOI:10.1109/ICCV.2001.937655.
[29] CLARK K,VENDT B,SIMTH K,et al.The cancer imaging archive(TCIA): Maintaining and operating a public information repository[J].Journal of Digital Imaging,2013,26(6):1045-1057.DOI:10.1007/s10278-013-9622-7.
[30] CHANG Hong,YEUNG D,XIONG Yimin.Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Press,2004:275-282.DOI:10.1109/CVPR.2004.1315043.
[31] HUANG Detian,HUANG Weiqin,HUANG Hui,et al.Application of regularization technique in image super-resolution algorithm via sparse representation[J].Optoelectronics Letters,2017,13(6):439-443.DOI:10.1007/s118 01-017-7143-1.
[32] HUANG Detian,HUANG Weiqin,YUAN Zhenguo,et al.Image super-resolution algorithm based on an improved sparse autoencoder[J].Information,2018,9(1):1-17.DOI:10.3390/info9010011.
[33] HUANG Detian,HUANG Weiqin,GU Peiting,et al.Image super-resolution reconstruction based on regularization technique and guided filter[J].Infrared Physics and Technology,2017,83:103-113.DOI:10.1016/j.infrared.2017.04.006.
[34] 黄德天,黄炜钦,云海姣,等.正则化技术和低秩矩阵在稀疏表示超分辨率算法中的应用[J].计算机辅助设计与图形学学报,2018,30(5):868-877.DOI:10.3724/SP.J.1089.2018.16442.