[1]符婉靖,肖朝昀,甘港璐,等.正断层作用下高承台群桩基础的破坏机制数值模拟[J].华侨大学学报(自然科学版),2020,41(2):156-163.[doi:10.11830/ISSN.1000-5013.201908032]
 FU Wanjing,XIAO Zhaoyun,GAN Ganglu,et al.Numerical Simulation of Failure Mechanism of High-Rise Pile Cap Foundation Subjected to Normal Fault[J].Journal of Huaqiao University(Natural Science),2020,41(2):156-163.[doi:10.11830/ISSN.1000-5013.201908032]
点击复制

正断层作用下高承台群桩基础的破坏机制数值模拟()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第2期
页码:
156-163
栏目:
出版日期:
2020-03-20

文章信息/Info

Title:
Numerical Simulation of Failure Mechanism of High-Rise Pile Cap Foundation Subjected to Normal Fault
文章编号:
1000-5013(2020)02-0156-08
作者:
符婉靖1 肖朝昀1 甘港璐1 陈荣淋1 张文龙2
1. 华侨大学 土木工程学院, 福建 厦门 361021;2. 福建岩土工程勘察研究院有限公司 上海福岩工程勘察分公司, 上海 201103
Author(s):
FU Wanjing1 XIAO Zhaoyun1 GAN Ganglu1 CHEN Ronglin1 ZHANG Wenlong2
1. Collage of Civil Engineering, Huaqiao University, Xiamen 361021, China; 2. Fujian Geotechnical Investigation and Research Institute Company Limited, Shanghai Fuyan Engineering Investigation Branch, Shanghai 201103, China
关键词:
高承台群桩 正断层 基岩错动量 破坏机制 数值模拟
Keywords:
high-rise pile cap foundation normal fault bedrock faulting failure mechanism numerical simulation
分类号:
TU43
DOI:
10.11830/ISSN.1000-5013.201908032
文献标志码:
A
摘要:
基于FLAC3D有限差分软件,模拟正断层错动下高承台群桩基础的破坏过程,分析上覆砂土和群桩的相互作用,对比相同条件下1×3群桩和3×3群桩破坏机制的差异.计算结果表明:正断层错动作用下,1×3群桩的存在对土体破裂带的扩展影响较小,土体剪切带仍保持80°倾角向上发展,在地表形成一条陡降带,而3×3群桩则明显改变破裂带的发展轨迹,使得土体剪切带在中间基桩的桩端位置发生分叉,在地表形成两条陡降带;正断层错动使得群桩向上盘一侧倾斜,1×3群桩和3×3群桩的承台位移和倾斜没有明显差异,其数值计算结果和理论计算结果保持一致;基岩错动使得基桩间承担的竖向荷载发生重分布,中间基桩受拉,竖向荷载向两侧基桩转移;随着基岩错动量的增加,1×3群桩和3×3群桩具有相同的轴力和弯矩发展规律.
Abstract:
Based on finite difference software FLAC3D, the failure process of high-rise pile cap foundation subjected to normal fault was simulated, the interaction between overlying sand and group piles was analyzed, and the failure mechanism of 1×3 pile group and 3×3 pile group was compared under the same conditions. The calculation results show that the existence of 1×3 pile group has little effect on the extension of the rupture zone. The shear rupture zone still maintains 80° inclination angle and then extends to the surface. While the 3×3 pile group obviously changes the extension of the rupture zone, which causes the soil shear zone to bifurcate at the pile end position of the intermediate pile, and forms two steep descending zones on the surface. The normal fault forces the group pile to tilt to hanging wall. There was no significant difference in displacement and inclination of pile caps between 1×3 pile group and 3×3 pile group. The numerical calculation results are consistent with the theoretical calculation results. The bedrock faulting redistributes the vertical load among the foundation piles, the middle foundation pile is under tension, and the vertical load transfers to the two sides of the foundation pile. With the increase of bedrock faulting, 1×3 pile group and 3×3 pile group have the same axial force and bending moment development rules.

参考文献/References:

[1] YANG Shuo,MAVROEIDIS G P.Bridges crossing fault rupture zones: A review[J].Soil Dynamics and Earthquake Engineering,2018,113:545-571.DOI:10.1016/j.soildyn.2018.03.027.
[2] 赵纪生,吴景发,师黎静,等.汶川地震地表破裂周围建筑物重建的避让距离[J].地震工程与工程震动,2009,29(6):96-101.
[3] 张永双,马寅生,胡道功,等.玉树地震地表破裂调查与灾后重建避让选址研究[J].地质学报,2010,84(5):593-605.
[4] 徐锡伟,陈桂华.活动断层避让问题探讨与建议[J].城市与减灾,2018(1):8-13.
[5] 杜修力,韩强,李忠献,等.5.12汶川地震中山区公路桥梁震害及启示[J].北京工业大学学报,2008,34(12):1270-1279.DOI:10.11936/bjutxb2008121270.
[6] ANASTASOPOULOS I,GAZETAS G.Foundation-structure systems over a rupturing normal fault: Part I: Observations after the Kocaeli 1999 earthquake[J].Bullet of Earthquake Engineering,2007,5(3):253-275.DOI:10.1007/s10518-007-9029-2.
[7] ANASTASOPOULOS I,KOURJOULIS R,GAZETAS G,et al.Interaction of piled foundation with a rupturing normal fault[J].Geotechnique,2013,63(12):1042-1059.DOI:10.1680/geot.12.P.114.
[8] ANASTASOPOULOS I,GAZETAS G.Foundation-structure systems over a rupturing normal fault: Part Ⅱ: Analysis of the Kocaeli case histories[J].Bullet of Earthquake Engineering,2007,5(3):277-301.DOI:10.1007/s10518-007-9030-9.
[9] GAZETAS G,ZARZOURAS O,DROSOS V,et al.Bridge-pier caisson foundations subjected to normal and thrust faulting: Physical experiments versus numerical analysis[J].Meccanica,2015,50:341-354.DOI:10.1007/s11012-014-9997-7.
[10] 蔡奇鹏,吴宏伟,陈星欣,等.正断层错动诱发单桩破坏及避让距离研究[J].岩土工程学报,2017,39(4):720-726.DOI:10.11779/CJGE201704018.
[11] 蔡奇鹏,甘港璐,吴宏伟,等.正断层诱发砂土中群桩基础破坏及避让距离研究[J].岩土力学,2019,40(3):1067-1075,1128.DOI:10.16285/j.rsm.2017.2512.
[12] CAI Qipeng,NG C W W.Centrifuge modeling of pile-sand interaction induced by normal faulting[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2016,142(10):04016046.DOI:10.1061/(ASCE)GT.1943-5606.0001500.
[13] LI Chienhung,LIN Minglang,HUANG Wenchao.Interaction between pile groups and thrust faults in a physical sandbox and numerical analysis[J].Engineering Geology,2019,252:65-77.DOI:10.1016/j.enggeo.2019.02.023.
[14] ANASTASOPOULOS I,GAZETAS G,BRANSBY M F,et al.Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2007,133(8):943-958.DOI:10.1061/(ASCE)1090-0241(2007)133:8(943).
[15] CAI Qipeng,NG C W W.Effects of the tip depth of a pre-existing fracture on surface fault ruptures in cemented clay[J].Computers and Geotechnics,2014,56:181-190.DOI:10.1016/j.compgeo.2013.12.005.
[16] NG C W W,CAI Qipeng,HU P.Centrifuge and numerical modeling of fault rupture propagation in clay with and without a pre-existing fracture[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2012,138(12):1492-1502.
[17] 蔡奇鹏,吴宏伟.胶结黏土中正断层扩展的变形和孔压变化研究[J].岩石力学与工程学报,2014,33(2):390-395.DOI:10.3969/j.issn.1000-6915.2014.02.020.
[18] CAI Qipeng,NG C W W.Analytical approach for estimating ground deformation profile induced by normal faulting in undrained clay[J].Canadian Geotechnical Journal,2013,50(4):413-422.DOI:10.1139/cgj-2012-0145.
[19] 骆冠勇,蔡奇鹏,吴宏伟.地层错动引起的上覆饱和黏土层变形特性的离心试验研究[J].岩土力学,2012,33(10):2985-2990.

备注/Memo

备注/Memo:
收稿日期: 2019-08-26
通信作者: 肖朝昀(1979-),男,教授,博士,主要从事隧道与地下结构、深基坑工程施工环境效应及对策、施工监测与控制技术、岩土数值计算、环境岩土工程的研究.E-mail:zyxiao@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778249); 华侨大学研究生科研创新能力培育计划项目(17013086011)
更新日期/Last Update: 2020-03-20