[1]陈亚伟,邵毅明,程前.插电式混合动力汽车的燃油经济性优化分析[J].华侨大学学报(自然科学版),2020,41(2):150-155.[doi:10.11830/ISSN.1000-5013.201907071]
 CHEN Yawei,SHAO Yiming,CHENG Qian.Optimization Analysis of Fuel Economy of Plug-In Hybrid Electric Vehicle[J].Journal of Huaqiao University(Natural Science),2020,41(2):150-155.[doi:10.11830/ISSN.1000-5013.201907071]
点击复制

插电式混合动力汽车的燃油经济性优化分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第41卷
期数:
2020年第2期
页码:
150-155
栏目:
出版日期:
2020-03-20

文章信息/Info

Title:
Optimization Analysis of Fuel Economy of Plug-In Hybrid Electric Vehicle
文章编号:
1000-5013(2020)02-0150-06
作者:
陈亚伟1 邵毅明2 程前1
1. 中国汽车工程研究院股份有限公司, 重庆 401147;2. 重庆交通大学 交通运输学院, 重庆 400074
Author(s):
CHEN Yawei1 SHAO Yiming2 CHENG Qian1
1. China Automotive Engineering Research Institute Limited Company, Chongqing 401147, China; 2. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
关键词:
插电式混合动力汽车 速度平滑 能量管理 燃油经济性 充电策略
Keywords:
plug-in hybrid electric vehicle speed smooth energy management fuel economy charging strategy
分类号:
U461.8
DOI:
10.11830/ISSN.1000-5013.201907071
文献标志码:
A
摘要:
针对速度变化对插电式混合动力汽车(PHEV)经济性的影响,提出一种顺序速度平滑控制策略.通过对给定交通约束条件下的速度曲线进行顺序平滑处理,优化充电策略,提高插电式混合动力汽车的燃油经济性.根据前车速度的预测值,在车辆与前车的可接受跟踪距离范围内,通过最小化加速度来平滑车速;采用最优的充电耗散策略,根据整个行程的信息,将电池充电延长到行程结束.通过对3种典型工况测试周期的组合,研究商用PHEV的连续优化对两种不同行驶模式的影响.仿真结果表明:所提出的顺序优化方法由于与车辆结构无关,实用性较高;由于在速度优化中使用线性车辆模型求解最优控制问题,因此计算过程的实时性较好;速度平滑控制方法使燃油消耗量减少7%~14%.
Abstract:
A sequential velocity smoothing control strategy was proposed for the impact of velocity changes on the economy of plug-in hybrid electric vehicles(PHEV). The fuel economy of plug-in hybrid electric vehicle was improved by smoothing the speed curves in a given traffic constraint in order to optimize the charging strategy. According to the predicted speed value of the car in front, within the acceptable tracking distance from it, the speed was smoothed by minimizing acceleration. Meanwhile, the optimal charging dissipation strategy was adopted to extend the battery charging to the end of the journey according to the information of the entire journey. The effect of continuous optimization of commercial PHEV on two different driving modes was studied by combining three typical test cycles. The simulation results show that the proposed sequential optimization method has high practicality because it has nothing to do with vehicle structure. Because the linear vehicle model is used to solve the optimal control problem in speed optimization, the real-time performance of the calculation process is better. Fuel consumption is reduced by 7% to 14%.

参考文献/References:

[1] HU Jia,SHAO Yunli,SUN Zongxuan,et al.Integrated optimal eco-driving on rolling terrain for hybrid electric vehicle with vehicle-infrastructure communication[J].Transportation Research Part C:Emerging Technologies,2016,68:228-244.DOI:10.1016/j.trc.2016.04.009.
[2] 王天泽.低温运行状态下插电式混合动力客车能量管理策略研究[D].哈尔滨:哈尔滨理工大学,2019.
[3] 李悦.考虑电池衰减特性的插电式混合动力汽车能量管理策略研究[D].太原:中北大学,2018.
[4] SCIARRETTA A,de NUNZIO G,OJEDA L L.Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[J].IEEE Control Systems Magazine,2015,35(5):71-90.DOI:10.1109/MCS.2015.2449688.
[5] 周雯雯.插电式混合动力汽车控制策略研究[D].镇江:江苏大学,2017.
[6] ZULKEFLI M A M,ZHENG Jianfeng,SUN Zongxuan,et al.Hybrid powertrain optimization with trajectory prediction based on inter-vehicle-communication and vehicle infrastructure integration[J].Emerging Technologies,2014,45:41-63.DOI:10.1016/j.trc.2014.04.011.
[7] 闫斌.插电式混合动力车辆动力品质和燃油经济性控制策略研究[D].上海:上海交通大学,2017.
[8] KIM T S, MANZIE C, SHARMA R.Two-stage optimal control of a parallel hybrid vehicle with traffic preview [C]//18th IFAC World Congress.Milano:International Federation of Automatic Control,2011:2115-2120.DOI:10.3182/20110828-6-it-1002.03423.
[9] 赵永刚.插电式混合动力客车能量管理全局优化[D].西安:长安大学,2016.
[10] JOHANNESSON L,MURGOVSKI N,JONASSON E,et al.Predictive energy management of hybrid longhaul trucks[J].Control Engineering Practice,2015,41(5):83-97.DOI:10.1016/j.conengprac.2015.04.014.
[11] 王光平.并联插电式混合动力汽车控制技术研究[D].长春:吉林大学,2016.
[12] HEPPELER G,SONNTAG M,WOHLHAUPTER U,et al.Predictive planning of optimal velocity and state of charge trajectories for hybrid electric vehicles[J].Control Engineering Practice,2017,61(32):229-243.DOI:10.1016/j.conengprac.2016.07.003.
[13] 解庆波.基于驾驶意图与行驶工况的混合动力电动汽车能量管理策略[D].重庆:重庆大学,2016.
[14] PRAKASH N,CIMINI G,STEFANOPOULOU A G,et al.Assessing fuel economy from automated driving: Influence of preview and velocity constraints[C]//ASME 2016 Dynamic Systems and Control Conference.Minneapolis:ASME,2016:221-230.DOI:10.1115/DSCC2016-9780.
[15] 白琴.插电式混合动力汽车能量管理控制策略研究[D].重庆:重庆大学,2016.
[16] CHEN Di,KIM Y,STEFANOPOULOU A G.State of charge node planning with segmented traffic information [C]//Annual American Control Conference.Milwaukee:IEEE Press,2018:38-42.DOI:10.23919/ACC.2018.8431103.
[17] 曾育平,秦大同,苏岭,等.插电式混合动力汽车动力系统的成本、油耗和排放多目标参数优化[J].汽车工程,2016,38(4):397-402,434.DOI:10.3969/j.issn.1000-680X.2016.04.001.

备注/Memo

备注/Memo:
收稿日期: 2019-07-25
通信作者: 邵毅明(1955-),男,教授,博士,主要从事车辆主动安全及节能方面的研究.E-mail:sym@cqjtu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFB0100905)
更新日期/Last Update: 2020-03-20