[1]郭瑞,李风雷.太阳能喷射增效的中高温空气源热泵系统性能分析[J].华侨大学学报(自然科学版),2019,40(6):763-770.[doi:10.11830/ISSN.1000-5013.201902038]
 GUO Rui,LI Fenglei.Analysis on Performance of Medium-to-High Temperature Air-Source Heat Pump System With Solar Injection Synergy[J].Journal of Huaqiao University(Natural Science),2019,40(6):763-770.[doi:10.11830/ISSN.1000-5013.201902038]
点击复制

太阳能喷射增效的中高温空气源热泵系统性能分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第6期
页码:
763-770
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
Analysis on Performance of Medium-to-High Temperature Air-Source Heat Pump System With Solar Injection Synergy
文章编号:
1000-5013(2019)06-0763-08
作者:
郭瑞 李风雷
太原理工大学 环境科学与工程学院, 山西 晋中 030600
Author(s):
GUO Rui LI Fenglei
College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
关键词:
太阳能喷射器 空气源热泵 热力学分析 设计工况 模拟计算
Keywords:
solar ejector air source heat pump thermodynamic analysis design condition numerical simulation
分类号:
TK519
DOI:
10.11830/ISSN.1000-5013.201902038
文献标志码:
A
摘要:
为进一步研究太阳能喷射增效的中高温空气源热泵系统的性能,建立一维喷射热泵系统热力学模型(高温级以R1234yf为制冷剂,低温级以R245fa为制冷剂).采用能量模型和模型相结合的方法,研究设计工况的变化对系统性能的影响.研究结果表明:当冷凝温度从45 ℃升高到70 ℃时,系统机械效率(COPm)从6.28减小至3.42,以集热量为基准的热效率(COPs)从0.79增大至1.00,以集热器吸收的有效热量为基准的热效率(COPh)从1.55增大至1.95,效率从20.0%增大至31.8%;当蒸发温度从-20 ℃升高到0 ℃时, COPm从4.58增大至5.28,COPs从0.75增大至1.03,COPh从1.46增大至2.02,效率从23.3%增大至28.9%;当中间蒸发温度从5 ℃升高到25 ℃时,COPm从4.33增大至5.14,COPs从1.05减小至0.84,COPh从2.00减小至1.75;当中间蒸发温度为13 ℃时,系统效率最大值可达25.7%;在冷凝温度和蒸发温度不变条件下,13 ℃是较为合理的一个中间温度值.
Abstract:
In order to investigate the system performance of medium-to-high temperature air-source heat pump with solar injection synergy, a 1-D ejector heat pump thermodynamic model was developed(by adoptingthe refrigerant R1234yf as high temperature circuits and R245fa as low temperature circuits). The integration of the energy model and the exergy model was deployed to analyze the impact of changeable design conditions on the system performance. The results showed that when the condensing temperature increased from 45 ℃ to 70 ℃, the system mechanical efficiency(COPm)decreased from 6.28 to 3.42, the thermal efficiency based on heat collection(COPs)improved from 0.79 to 1.00, the thermal efficiency based on effective heat absorbed by the collector(COPh)grew from 1.55 to 1.95, and the exergy efficiency enhanced from 20.0% up to 31.8%. While the evaporation temperature raised from -20 ℃ to 0 ℃, the COPm improved from 4.58 to 5.28, the COPs growed from 0.75 to 1.03, COPh increased from 1.46 to 2.02, and the exergy efficiency enhanced from23.3% up to 28.9%; When the intermediate evaporation temperature increased from 5 ℃ to 25 ℃, the COPm improved from 4.33 to 5.14, the COPs reduced from 1.05 to 0.84, and the COPh dropped from 2.00 to 1.75. It is found that the exergy efficiency of the system reached to the maximum of 25.7% when the intermediate evaporation temperature was 13 ℃. Therefore, the intermediate evaporation temperature was 13 ℃ with assuming unchangeable conditions of evaporation and condensing temperature.

参考文献/References:

[1] 王栋鹏,王彤,葛万斌,等.太阳能空气源热泵热水系统的设计和运行[J].中国给水排水,2015,31(16):68-71.
[2] 王洪利,张率华,阚德民.基于R1234yf和R134a制冷剂的太阳能空气源复合热泵性能对比[J].节能,2018,37(1):54-59.DOI:10.3969/j.issn.1004-7948.2018.01.012.
[3] 黎珍,田琦,董旭.太原地区太阳能耦合空气源热泵一体化热水系统性能分析[J].华侨大学学报(自然科学版),2017,38(5):670-675.DOI:10.11830/ISSN.1000-5013.201612014.
[4] DHESIKAN S,POLK J.Recent developments in the design theories and applications of ejectors[J].Journal of the Institute of Energy,1995,68(475):65-79.DOI:10.1016/0378-7753(95)02193-K.
[5] EAMES I W,APHORNRATANA S,HAIDER H.A theoretical and experimental study of a small-scale steam jet refrigerator[J].International Journal of Refrigeration,1995,18(6):378-386.DOI:10.1016/0140-7007(95)98160-m.
[6] 常曌,李风雷.喷射式热泵系统的能量分析及分析[J].华侨大学学报(自然科学版),2018,39(2):227-232.DOI:10.11830/ISSN.1000-5013.201707033.
[7] CHEN Jiaheng,YU Jianlin.Theoretical analysis on a new direct expansion solar assisted ejector-compression heat pump cycle for water heater[J].Solar Energy,2017,142:299-307.DOI:10.1016/j.solener.2016.12.043.
[8] XU Shuxue,MA Guoyuan.Exergy analysis for quasi two-stage compression heat pump system coupled with ejector[J].Experimental Thermal and Fluid Science,2011,35(4):700-705.DOI:10.1016/j.expthermflusci.2011.01.004.
[9] CHEN Xiaojuan,ZHOU Yuanyuan,YU Jianlin.A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application[J].Energy and Buildings,2011,43(12):3331-3336.
[10] ZHU Lin,YU Jianlin,ZHOU Mengliu,et al.Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems[J].Renewable Energy,2014,63:735-740.
[11] QI Hongjie,LIU Fuya,YU Jianlin.Performance analysis of a novel hybrid vapor injection cycle with subcooler and flash tank for air-source heat pumps[J].International Journal of Refrigeration,2017,74:540-549.
[12] MORENO-RODRíGUEZ A,GONZáLEZ-GIL A,IZQUIERDO M,et al.Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications[J].Energy,2012,45(1):704-715.DOI:10.1016/j.energy.2012.07.021.
[13] HUANG B J,CHANG J M,WANG C P,et al.A 1-D analysis of ejector performance[J].International Journal of Refrigeration,1999,22:354-364.DOI:10.1016/S0140-7007(99)00004-3.
[14] KHALIL A,FATOUH M,ELGENDY E.Ejector design and theoretical study of R134a ejector refrigeration cycle[J].International Journal of Refrigeration,2011,34(7):1684-1698.DOI:10.1016/j.ijrefrig.2011.01.005.
[15] CHEN Weixiong, LIU Ming, CHONG Daotong,et al.A 1D model to predict ejector performance at critical and sub-critical operational regimes[J].International Journal of Refrigeration,2013,36(6):1750-1761.
[16] YAN Gang,BAI Tao,YU Jianlin.Energy and exergy efficiency analysis of solar driven ejector-compressor heat pump cycle[J].Solar Energy,2016,125:243-255.DOI:10.1016/j.solener.2015.12.021.
[17] JAFARKAZEMI F,AHMADIFARD E.Energetic and exergetic evaluation of flat plate solar collectors[J].Renewable Energy,2013,56:55-63.DOI:10.1016/j.renene.2012.10.031.

相似文献/References:

[1]黎珍,田琦,董旭.太原地区太阳能耦合空气源热泵一体化热水系统性能分析[J].华侨大学学报(自然科学版),2017,38(5):670.[doi:10.11830/ISSN.1000-5013.201612014]
 LI Zhen,TIAN Qi,DONG Xu.Performance Analysis of Solar Energy Coupling With Air Source Heat Pump Integration Hot Water System in Taiyuan Area[J].Journal of Huaqiao University(Natural Science),2017,38(6):670.[doi:10.11830/ISSN.1000-5013.201612014]
[2]李宗北,田琦,董旭,等.空气源热泵换热器与岗亭壁体一体化供暖性能[J].华侨大学学报(自然科学版),2018,39(4):569.[doi:10.11830/ISSN.1000-5013.201804065]
 LI Zongbei,TIAN Qi,DONG Xu,et al.Research on Heating Performance of Booth With Air-Source Heat Pump Heat Exchanger and Pavilion Wall Integrated[J].Journal of Huaqiao University(Natural Science),2018,39(6):569.[doi:10.11830/ISSN.1000-5013.201804065]
[3]刘慧俊,李风雷.太阳能增效的复叠式空气源热泵系统能量分析与及分析[J].华侨大学学报(自然科学版),2022,43(2):160.[doi:10.11830/ISSN.1000-5013.202102009]
 LIU Huijun,LI Fenglei.Energy Analysis and Exergy Analysis of Solar Energy Enhanced Cascade Air-Source Heat Pump System[J].Journal of Huaqiao University(Natural Science),2022,43(6):160.[doi:10.11830/ISSN.1000-5013.202102009]

备注/Memo

备注/Memo:
收稿日期: 2019-02-24
通信作者: 李风雷(1967-),男,教授,博士,主要从事空调制冷新技术、热能利用与节能技术的研究.E-mail:fengleili@126.com.
基金项目: 国家国际科技合作专项项目(2013DFA61580); 山西省重点研发计划项目(201803D31036); 山西省回国留学人员科研资助项目(2016-032)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2019-11-20