[1]霍宇露,程远达,李彦君,等.煤改电背景下空气源热泵系统对电网负荷影响的模拟分析[J].华侨大学学报(自然科学版),2019,40(6):756-762.[doi:10.11830/ISSN.1000-5013.201903046]
 HUO Yulu,CHENG Yuanda,LI Yanjun,et al.Simulation Analysis of Influence of Air Source Heat Pump System on Power Grid Load in Background of Coal-to-Electricity Reform[J].Journal of Huaqiao University(Natural Science),2019,40(6):756-762.[doi:10.11830/ISSN.1000-5013.201903046]
点击复制

煤改电背景下空气源热泵系统对电网负荷影响的模拟分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第6期
页码:
756-762
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
Simulation Analysis of Influence of Air Source Heat Pump System on Power Grid Load in Background of Coal-to-Electricity Reform
文章编号:
1000-5013(2019)06-0756-07
作者:
霍宇露1 程远达1 李彦君2 贾捷1 杜震宇1
1. 太原理工大学 环境科学与工程学院, 山西 晋中 030600;2. 山西林业职业技术学院 经济贸易系, 山西 太原 030009
Author(s):
HUO Yulu1 CHENG Yuanda1 LI Yanjun2 JIA Jie1 DU Zhenyu1
1. College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; 2. Department of Economics and Trade, Shanxi Forestry Vocational Technical College, Taiyuan 030009, China
关键词:
空气源热泵系统 电网负荷 煤改电 清洁供暖
Keywords:
air source heat pump system grid load coal-to-electricity clean heating
分类号:
TU832.1
DOI:
10.11830/ISSN.1000-5013.201903046
文献标志码:
A
摘要:
在煤改电进程中,为减缓因规模化应用空气源热泵供暖对电网负荷造成的负面影响,模拟研究空气源热泵供暖系统对电网负荷的影响情况.以京郊地区400万用户的采暖用电为例,采用EnergyPlus能耗模拟软件分析供暖期不同阶段用户侧优化调控,以满足电网需求响应的可能及优势.研究结果表明:与空气源热泵直接供暖(ASHP)系统相比,空气源热泵蓄热(ASHP-HS)系统可大幅降低电网峰谷差,提高电网负载率,更有利于电网的稳定安全运行;尽管ASHP-HS系统的初投资较高,但其增加的成本部分的回收年限仅为3.5 a,具有更好的全生命周期经济性.
Abstract:
With the continuous advancement of coal-to-electricity engineering, the influence of air source heat pump heating system on grid load is simulated in order to reduce the negative impact of large-scale application of air source heat pump heating on grid load. Taking the heating power of 4 million users in the suburbs of Beijing as an example, the EnergyPlus energy simulation software is used to analyze the possibility and advantages of optimizing the user side to meet the grid demand response in different stages of the heating period. The results show that compared with the air source heat pump direct heating(ASHP)system, air source heat pump thermal storage(ASHP-HS)system can greatly reduce the peak-to-valley difference of the grid and increase the grid load rate, which is more conducive to the stability and security of the grid. Although the initial investment of ASHP-HS system is higher, the recovery period is only 3.5 a, which has better life cycle economy.

参考文献/References:

[1] 周延丽,张天维.煤改电取: 暖减霾尚需大力推进[J].侨园,2017(5):5.
[2] 吴迪,胡斌,王如竹,等.我国空气源热泵供热现状、技术及政策[J].制冷技术,2017,37(5):1-7.DOI:10.3969/j.issn.2095-4468.2017.05.001.
[3] 刘艳茹,杨卫红,王基,等.“煤改电”工程实施前后农网负荷特性分析[J].电气技术,2017,18(4):110-115.DOI:10.3969/j.issn.1673-3800.2017.04.021.
[4] 高泽,陈登明,杨建华,等.计及“煤改电”的农村低压配电网规划研究[J].电工电气,2015(5):1-5.DOI;10.3969/j.issn.1007-3175.2015.05.001.
[5] 姚轲,李绍源,李晓豫.电力负荷因素对电网安全的影响及防治[J].河南电力技术,2014(2):31-33.
[6] ZAREEN N,MUSTAFA M W,SULTANAN U,et al.Optimal real time cost-benefit based demand response with intermittent resources[J].Energy,2015(90):1695-1706.DOI:10.1016/j.energy.2015.06.126.
[7] GHZAVINI F,SOARES J,ABRISHAMBAF O,et al.Demand response implementation in smart households[J].Energy and Buildings,2017,143:129-148.DOI:10.1016/j.enbuild.2017.03.020.
[8] 潘敬东,谢开,华科.计及用户响应的实时电价模型及其内点法实现[J].电力系统自动化,2005,29(23):8-14.DOI:10.3321/j.issn:1000-1026.2005.23.002.
[9] 黄逊青.家用制冷器具需求响应技术的发展[J].制冷与空调,2010,10(5):6-11.DOI:10.3969/j.issn.1009-8402.2010.05.002.
[10] JOUNG M,KIM J.Assessing demand response and smart metering impacts on long-term electricity market prices and system reliability[J].Applied Energy,2013,101:441-448.DOI:10.1016/j.apenergy.2012.05.009.
[11] 李俊,刘俊勇,张力,等.激励性监管下的电力市场需求侧分时电价机制研究[J].四川电力技术,2011,34(3):5-8.DOI:10.3969/j.issn.1003-6954.2011.03.002.
[12] 曾勇.基于智能电网的实时电价研究[D].重庆:重庆大学,2011.
[13] 董萌萌.基于峰谷电价的需求响应效果评价[D].北京:华北电力大学,2014.
[14] ZHANG Guoxin,WANG Beibei.Study of power market operation with demand response and consideration of China’s power market reform[J].Electric Power Automation Equipment,2008,28(10):28-33.DOI:10.3969/j.issn.1006-6047.2008.10.006.
[15] 乐慧,李好玥,江亿.用空气源热泵实现农村采暖的“煤改电”同时为电力削峰填谷[J].中国能源,2016,38(11):9-15.DOI:10.3969/j.issn.1003-2355.2016.11.002.
[16] AYDIN D,CASEY S P,RIFFAT S.The latest advancements on thermochemical heat storage systems[J].Renewable and Sustainable Energy Reviews,2015,41:356-367.DOI:10.1016/j.rser.2014.08.054.
[17] 倪龙,周超辉,姚杨,等.空气源热泵蓄热系统形式及研究进展[J].制冷学报,2017,38(4):23-30.DOI:10.3969/j.issn.0253-4339.2017.04.023.
[18] ZHAO Yang,LU Yuehong,YAN Chengchu,et al.MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages[J].Energy and Buildings,2015,86:415-426.DOI:10.1016/j.enbuild.2014.10.019.
[19] YAN Chengchu,XUE Xue,WANG Shengwei,et al.A novel air-conditioning system for proactive power demand response to smart grid[J].Energy Conversion and Management,2015,102:239-246.DOI:10.1016/j.egypro.2014.11.897.
[20] 李勇,解凯.蓄热电锅炉技术应用分析[J].河北电力技术,2009,28(2):41-45.DOI:10.3969/j.issn.1001-9898.2009.02.018.
[21] 黄永红,王成,兰新如,等.临界峰谷电价比在电锅炉蓄热技术中的应用[J].长沙理工大学学报,2014(2):81-85.DOI:10.3969/j.issn.1672-9331.2014.02.014.
[22] 李国庆,庄冠群,田春光,等.基于大规模储能融合蓄热式电锅炉的风电消纳多目标优化控制[J].电力自动化设备,2018,38(10):46-52.DOI:10.16081/j.issn.1006-6047.2018.10.008.
[23] 孙平,林小茁,江辉民.新型大型蓄能式空气源热泵热水机组的探讨[J].制冷与空调,2009,9(4):26-29.DOI:10.3969/j.issn.1009-8402.2009.04.007.
[24] 曹琳,倪龙,李炳熙,等.蓄能型空气源热泵热水机组性能实验[J].哈尔滨工业大学学报,2011,43(10):71-75.DOI:10.11918/j.issn.0367-6234.2011.10.015.
[25] LONG Jianyou,ZHU Dongsheng.Numerical and experimental study on heat pump water heater with PCM for thermal storage[J].Energy and Buildings,2008,40:666-672.DOI:10.1016/j.enbuild.2007.05.001.
[26] UPSHAW C R,RHODES J D,WEBBER M E.Modeling peak load reduction and energy consumption enabled by an integrated thermal energy and water storage system for residential air conditioning systems in Austin, Texas[J].Energy and Buildings,2015,97:21-32.DOI:10.1016/j.enbuild.2015.03.050.
[27] 张维亚,魏鋆.冷热源工程[M].北京:煤炭工业出版社,2009.
[28] 钟泽权.浅析电力负荷构成及对负荷率的影响[J].广东电力,2007,20(3):27-30.DOI:10.3969/j.issn.1007-290X.2007.03.007.
[29] 姚文涛.供水大厦空调冷热源方案比较[D].西安:西安建筑科技大学,2004.

备注/Memo

备注/Memo:
收稿日期: 2019-03-18
通信作者: 程远达(1985-),副教授,博士,主要从事建筑节能及可再生能源利用的研究.E-mail:chengyuanda@tyut.edu.cn.
基金项目: 国家重点研发计划项目子课题(2018YFD1100701); 山西省重点研发计划项目(201803D121105)
更新日期/Last Update: 2019-11-20