[1]廖仁国,周先齐,蔡燕燕,等.钙质砂与石英砂渗透性差异对比试验[J].华侨大学学报(自然科学版),2019,40(5):600-605.[doi:10.11830/ISSN.1000-5013.201903049]
 LIAO Renguo,ZHOU Xianqi,CAI Yanyan,et al.Comparative Experiment on Permeability Difference Between Calcareous Sand and Quartz Sand[J].Journal of Huaqiao University(Natural Science),2019,40(5):600-605.[doi:10.11830/ISSN.1000-5013.201903049]
点击复制

钙质砂与石英砂渗透性差异对比试验()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第5期
页码:
600-605
栏目:
出版日期:
2019-09-20

文章信息/Info

Title:
Comparative Experiment on Permeability Difference Between Calcareous Sand and Quartz Sand
文章编号:
1000-5013(2019)05-0600-06
作者:
廖仁国1 周先齐12 蔡燕燕1 张小燕3
1. 华侨大学 岩土工程研究所, 福建 厦门 361021;2. 厦门理工学院 土木工程与建筑学院, 福建 厦门 361024;3. 中国矿业大学(北京)力学与建筑工程学院, 北京 100083
Author(s):
LIAO Renguo1 ZHOU Xianqi12 CAI Yanyan1 ZHANG Xiaoyan3
1. Institute of Geotechnical Engineering, Huaqiao University, Xiamen 361021, China; 2. School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China; 3. School of Mechanics and Civil Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
关键词:
渗透系数 围压 钙质砂 石英砂
Keywords:
permeability coefficient confining pressure calcareous sand quartz sand
分类号:
TU411.4
DOI:
10.11830/ISSN.1000-5013.201903049
文献标志码:
A
摘要:
针对相同粒径和级配的钙质砂与石英砂,通过单粒径三轴渗透试验和混合粒径三轴剪切渗透试验,对比分析单粒径砂渗透性受围压的影响规律,以及三轴剪切过程中混合粒径砂渗透性演化行为的差异.三轴渗透试验结果表明:钙质砂渗透性随围压的升高而降低,随粒径的增加而增加,与石英砂规律相似,钙质砂渗透系数与围压表现出较好的指数关系;在同级配条件下,钙质砂的渗透性小于普通石英砂;在给定围压和渗透压的条件下,钙质砂渗流量和时间呈现线性关系,依然服从达西定律.三轴剪切渗透试验结果表明:在较低围压下,钙质砂变形由剪缩到剪胀,渗透系数随应变的增加先下降,后升高,石英砂变形规律及渗透规律与钙质砂相似;在较高围压下,二者差异明显,钙质砂变形表现为剪缩特性,且伴有一定量的颗粒破碎,渗透系数降幅由快变慢直至稳定,而石英砂无论是变形规律还是渗透规律,均与较低围压下一致.
Abstract:
For the calcareous sand and quartz sand with the same particle size and gradation, the influence of confining pressure on the permeability of single particle size sand was analyzed by single particle size triaxial permeability test and mixed particle size triaxial shear permeability test, the difference of permeability evolution behavior of mixed particle size sand was discussed during triaxial shear. The results of triaxial permeability test show that the permeability of calcareous sand decreases with the increase of confining pressure, and increases with the increase of particle size, which is similar to that of quartz sand, the permeability coefficient of calcareous sand shows a good exponential relationship with confining pressure. The permeability of calcareous sand is awer than that of ordinary quartz sand, the seepage flow rate and time of calcareous sand show a linear relationship under given confining pressure and osmotic pressure, and still obey Darcy’s law. The results of triaxial shear permeability test show that under low confining pressure, the deformation of calcareous sand is from shear shrinkage to dilatancy, and the permeability coefficient decreases at first and then increases with the increase of strain. The deformation and permeability of quartz sand are similar to those of calcareous sand, but the difference is obvious at high confining pressure. The deformation of calcareous sand is characterized by shear shrinkage and a certain amount of particle breakage, and the decrease of permeability coefficient changes from fast to slow, to stable. The deformation and permeability of quartz sand are consistent with those under confining pressure.

参考文献/References:

[1] 王新志.南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
[2] 朱长歧,陈海洋,孟庆山,等.钙质砂颗粒内孔隙的结构特征分析[J].岩土力学,2014,35(7):1831-1836.DOI:10.16285/j.rsm.2014.07.005.
[3] 朱长歧,周斌,刘海峰.南海海滩岩的细观结构及其基本物理力学性质研究[J].岩石力学与工程学报,2015,34(4):683-693.DOI:10.13722/j.cnki.jrme.2015.04.004.
[4] 秦月,孟庆山,汪稔,等.钙质砂地基单桩承载特性模型试验研究[J].岩土力学,2015,36(6):1714-1720.DOI:10.16285/j.rsm.2015.06.025.
[5] 孟庆山,秦月,汪稔.珊瑚礁钙质沉积物液化特性及其机理研究[J].土工基础,2012,26(1):21-24.DOI:10.3969/j.issn.1004-3152.2012.01.007.
[6] 王新志,汪稔,孟庆山,等.钙质砂室内载荷试验研究[J].岩土力学,2009,30(1):147-156.DOI:10.16285/j.rsm.2009.01.039.
[7] 张家铭,蒋国盛,汪稔.颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J].岩土力学,2009,30(7):2043-2048.DOI:10.16285/j.rsm.2009.07.056.
[8] ZHANG B,HERBOLD E B,HOMEL M A,et al.DEM particle fracture model[R].Livermore:Lawrence Livermore National Laboratory,2015.
[9] 王轶群.钙质砂宏细观力学特性试验及离散元模拟[D].杭州:浙江大学,2016.
[10] 叶剑红,曹梦,李刚.中国南海吹填岛礁原状钙质砂蠕变特征初探[J].岩土力学与工程学报,2019,38(6):1242-1251.DOI:10.13722/j.cnki.jrme.2018.0695.
[11] 曹梦,叶剑红.中国南海钙质砂蠕变-应力-时间四参数数学模型[J].岩土力学,2019,40(5):1771-1777.DOI:10.16285/j.rsm.2018.1267.
[12] 徐学勇,汪稔,王新,等.饱和钙质砂爆炸响应动力特性试验研究[J].岩土力学,2012,33(10):2953-2959.DOI:10.16285/j.rsm.2012.10.005.
[13] 任玉宾,王胤,杨庆.颗粒级配与形状对钙质砂渗透性的影响[J].岩土力学,2018,39(2):1-7.DOI:10.16285/j.rsm.2016.0277.
[14] DONOHUEA T J,WENSRICHB C M.Improving permeability prediction for fibrous materials through a numerical investigation into pore size and pore connectivity[J].Powder Technology,2009,195(1):57-62.DOI:10.1016/j.powtec.2009.05.012.
[15] 邵健伟,鲁程鹏,马克迪,等.压缩过程中粗粒土渗透性变化的试验分析[J].水资源与水工程学报,2016,27(6),217-221.DOI:10.11705 /j.issn.1672-643X.2016.06.39.
[16] 胡明鉴,蒋航海,朱长歧,等.钙质砂的渗透特性及其影响因素探讨[J].岩土力学,2017,38(10):2895-2900.DOI:10.16285/j.rsm.2017.10.016.
[17] 胡明鉴,崔翔,王新志,等.细颗粒对钙质砂渗透性的影响试验研究[J].岩土力学,2019,40(8):1-6.DOI:10.16285/j.rsm.2018.0849.
[18] 钱琨,王新志,陈剑文,等.南海岛礁吹填钙质砂渗透特性试验研究[J].岩土力学,2017,38(6):1557-1564.DOI:10.16285/j.rsm.2017.06.003.
[19] 王志兵,汪稔,胡明鉴,等.颗粒运移对蒋家沟土体渗透性影响的试验研究[J].岩土力学,2011,32(7):2017-2024.DOI:10.16285/j.rsm.2011.07.012.
[20] 王艳芳,蔡燕燕,蔡正银.饱和砂土蠕变特性实验[J].华侨大学学报(自然科学版),2017,38(1):31-37.DOI:10.11830/ISSN.1000-5013.201701006.
[21] 张小燕,蔡燕燕,王振波,等.珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析[J].岩土力学,2018,39(5):1573-1580.DOI:10.16285/j.rsm.2017.0763.
[22] 中华人民共和国水利部.土工试验方法标准: GB/T 50123-1999[S].北京:中国计划出版社,1999.

备注/Memo

备注/Memo:
收稿日期: 2019-03-24
通信作者: 蔡燕燕(1982-),女,副教授,博士,主要从事岩土力学与基础工程的研究.E-mail:yycai@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51774147); 福建省自然科学基金资助项目(2017J01094); 华侨大学研究生科研创新基金资助项目(17013086020)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2019-09-20