参考文献/References:
[1] 张妍,王东风,韩璞.一种风电场短期风速组合预测模型[J].太阳能学报,2017,38(6):1510-1516.
[2] 彭怀午,刘方锐,杨晓峰.基于组合预测方法的风电场短期风速预测[J].太阳能学报,2011,32(4):543-547.
[3] ZULUAGA C D,áLVAREZ M A,GIRALAO E.Short-term wind speed prediction basedon robust Kalman filtering: An experimental comparison[J].Applied Energy,2015,156(10):321-330.DOI:10.1016/j.apenergy.2015.07.043.
[4] 勾海芝,赵征,夏子涵.基于经验模式分解的神经网络组合风速预测研究[J].电力科学与工程,2017,33(10):62-67.DOI:CNKI:SUN:DLQB.0.2017-10-011.
[5] RAMASAMY P,CHANDEL S S,YADAV A K.Wind speed prediction in the mountainous region of India using an artificial neural network model[J].Renewable Energy,2015,80(8):338-347.DOI:10.1016/j.renene.2015.02.034.
[6] 刘爱国,薛云涛,胡江鹭,等.基于GA优化SVM的风电功率的超短期预测[J].电力系统保护与控制,2015,43(2):90-95.
[7] WANG Jianzhou,HU Jianming.A robust combination approach for short-term wind speed forecasting andanalysis: Combination of the ARIMA, ELM, SVM and LSSVM forecasts using a GPR model[J].Energy,2015,93(12):41-56.DOI:10.1016/j.energy.2015.08.045.
[8] LIU Huichao,TIAN Hongqi,LI Yanfei.Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J].Energy Conversion and Management,2015,100(4):16-22.DOI:10.1016/j.enconman.2015.04.057.
[9] 高阳,钟宏宇,陈鑫宇,等.基于神经网络和小波分析的超短期风速预测[J].可再生能源,2016,34(5):705-711.
[10] 陈德生,李培强,李欣然,等.基于小波变换的短期风速预测综合模型[J].电工电能新技术,2012,31(3):73-76.DOI:10.3969/j.issn.1003-3076.2012.03.016.
[11] 陈艳平,毛弋,陈萍,等.基于EEMD-样本熵和Elman神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2016,28(3):59-64.DOI:10.3969/j.issn.1003-8930.2016.03.011.
[12] SAFARI N,CHUNG C Y,PRICE G C D.A novel multi-step short-term wind powerprediction framework based on chaotic time series analysis and singular spectrum analysis[J].IEEE Transactions on Power Systems,2017,33(1):590-601.DOI:10.1109/TPWRS.2017.2694705.
[13] ROSENTHAL W S,TARTAKOVSKY A,HUANG Zhenyu.Ensemble Kalman filter for dynamicstate estimation of power grids stochastically driven by time-correlated mechanical input power[J].IEEE Transactionson Power Systems,2017,33(4):1-10.DOI:10.1109/TPWRS.2017.2764492.
[14] 修春波,任晓,李艳晴,等.基于卡尔曼滤波的风速序列短期预测方法[J].电工技术学报,2014,29(2):253-259.
相似文献/References:
[1]徐园园,郑力新,周凯汀.LabWindows/CVI对Matlab的引擎调用技术[J].华侨大学学报(自然科学版),2007,28(4):365.[doi:10.3969/j.issn.1000-5013.2007.04.008]
XU Yuan-yuan,ZHENG Li-xin,ZHOU Kai-ting.The Technology of LabWindows/CVI Calling on Matlab Engine[J].Journal of Huaqiao University(Natural Science),2007,28(4):365.[doi:10.3969/j.issn.1000-5013.2007.04.008]
[2]张江源,林福泳.基于离散元的多分辨率信号去噪新方法[J].华侨大学学报(自然科学版),2013,34(2):130.[doi:10.11830/ISSN.1000-5013.2013.02.0130]
ZHANG Jiang-yuan,LIN Fu-yong.A New Method of Signal De-Noising by Multi-Resolution Analysis Based on Discrete Element[J].Journal of Huaqiao University(Natural Science),2013,34(4):130.[doi:10.11830/ISSN.1000-5013.2013.02.0130]
[3]陆在宝,徐伟铭,肖桂荣.水土保持措施布局影响因子的多尺度分析[J].华侨大学学报(自然科学版),2016,37(6):725.[doi:10.11830/ISSN.1000-5013.201606013]
LU Zaibao,XU Weiming,XIAO Guirong.Multi-Scale Analysis on Impact Factors of Layout of Soil and Water Conservation Measures[J].Journal of Huaqiao University(Natural Science),2016,37(4):725.[doi:10.11830/ISSN.1000-5013.201606013]