[1]常雨芳,张力,谢昊,等.采用小波分析和神经网络的短期风速组合预测[J].华侨大学学报(自然科学版),2019,40(4):556-560.[doi:10.11830/ISSN.1000-5013.201806023]
 CHANG Yufang,ZHANG Li,XIE Hao,et al.Short-Term Wind Speed Combined ForecastingUsing Wavelet Analysis and Neural Network[J].Journal of Huaqiao University(Natural Science),2019,40(4):556-560.[doi:10.11830/ISSN.1000-5013.201806023]
点击复制

采用小波分析和神经网络的短期风速组合预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第4期
页码:
556-560
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
Short-Term Wind Speed Combined ForecastingUsing Wavelet Analysis and Neural Network
文章编号:
1000-5013(2019)04-0556-05
作者:
常雨芳12 张力2 谢昊2 刘光裕2
1. 湖北工业大学 太阳能高效利用湖北省协同创新中心, 湖北 武汉 430068;2. 湖北工业大学 电气与电子工程学院, 湖北 武汉 430068
Author(s):
CHANG Yufang12 ZHANG Li2 XIE Hao2 LIU Guangyu2
1. Hubei Collaborative Innovation Centre for High-Efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China; 2. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
关键词:
短期预测 小波分析 径向基神经网络 Elman神经网络 广义回归神经网络
Keywords:
short-term forecasting wavelet analysis radial basis function neural network Elman neural network general regression neural network
分类号:
TM614
DOI:
10.11830/ISSN.1000-5013.201806023
文献标志码:
A
摘要:
为了提高风速的波动性与随机性预测精度,提出小波分析和神经网络组合的风速预测模型.该方法利用小波分解将风速分解为一列频率不相同的分量,并利用二插值进行重构;根据各个分量的频率特征,选择合适的模型分别进行预测;高频分量采用组合神经网络预测,低频分量采用合适的单一模型直接进行预测;将各预测值叠加得到最终预测值.算例分析表明:相较于单一预测模型,所提方法的预测精度得到大幅提升,更加贴近实际风速曲线,预测结果更具可靠性.
Abstract:
In order to improve the forecasting accuracy and reduce the impact of randomness and volatility of the wind speed, a new forecasting model based on wavelet analysis and neural network is presented. By means of the wavelet analysis technique, the original wind speed series are decomposed into a series of components of different frequencies components, and reconstructed by twice-interpolation. According to the frequency characteristics of each component, the suitable model is selected to forecast separately. The high frequency component is forecasted by combined neural network, and the low frequency component is forecasted by a suitable single model. The final forecasting value is obtained by superimposing each forecasting values. The simulation results show that compared with the single prediction model, the forecasting accuracy of the proposed method is greatly improved, and it is closer to the actual wind speed curve, and it is more reliable.

参考文献/References:

[1] 张妍,王东风,韩璞.一种风电场短期风速组合预测模型[J].太阳能学报,2017,38(6):1510-1516.
[2] 彭怀午,刘方锐,杨晓峰.基于组合预测方法的风电场短期风速预测[J].太阳能学报,2011,32(4):543-547.
[3] ZULUAGA C D,áLVAREZ M A,GIRALAO E.Short-term wind speed prediction basedon robust Kalman filtering: An experimental comparison[J].Applied Energy,2015,156(10):321-330.DOI:10.1016/j.apenergy.2015.07.043.
[4] 勾海芝,赵征,夏子涵.基于经验模式分解的神经网络组合风速预测研究[J].电力科学与工程,2017,33(10):62-67.DOI:CNKI:SUN:DLQB.0.2017-10-011.
[5] RAMASAMY P,CHANDEL S S,YADAV A K.Wind speed prediction in the mountainous region of India using an artificial neural network model[J].Renewable Energy,2015,80(8):338-347.DOI:10.1016/j.renene.2015.02.034.
[6] 刘爱国,薛云涛,胡江鹭,等.基于GA优化SVM的风电功率的超短期预测[J].电力系统保护与控制,2015,43(2):90-95.
[7] WANG Jianzhou,HU Jianming.A robust combination approach for short-term wind speed forecasting andanalysis: Combination of the ARIMA, ELM, SVM and LSSVM forecasts using a GPR model[J].Energy,2015,93(12):41-56.DOI:10.1016/j.energy.2015.08.045.
[8] LIU Huichao,TIAN Hongqi,LI Yanfei.Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J].Energy Conversion and Management,2015,100(4):16-22.DOI:10.1016/j.enconman.2015.04.057.
[9] 高阳,钟宏宇,陈鑫宇,等.基于神经网络和小波分析的超短期风速预测[J].可再生能源,2016,34(5):705-711.
[10] 陈德生,李培强,李欣然,等.基于小波变换的短期风速预测综合模型[J].电工电能新技术,2012,31(3):73-76.DOI:10.3969/j.issn.1003-3076.2012.03.016.
[11] 陈艳平,毛弋,陈萍,等.基于EEMD-样本熵和Elman神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2016,28(3):59-64.DOI:10.3969/j.issn.1003-8930.2016.03.011.
[12] SAFARI N,CHUNG C Y,PRICE G C D.A novel multi-step short-term wind powerprediction framework based on chaotic time series analysis and singular spectrum analysis[J].IEEE Transactions on Power Systems,2017,33(1):590-601.DOI:10.1109/TPWRS.2017.2694705.
[13] ROSENTHAL W S,TARTAKOVSKY A,HUANG Zhenyu.Ensemble Kalman filter for dynamicstate estimation of power grids stochastically driven by time-correlated mechanical input power[J].IEEE Transactionson Power Systems,2017,33(4):1-10.DOI:10.1109/TPWRS.2017.2764492.
[14] 修春波,任晓,李艳晴,等.基于卡尔曼滤波的风速序列短期预测方法[J].电工技术学报,2014,29(2):253-259.

相似文献/References:

[1]徐园园,郑力新,周凯汀.LabWindows/CVI对Matlab的引擎调用技术[J].华侨大学学报(自然科学版),2007,28(4):365.[doi:10.3969/j.issn.1000-5013.2007.04.008]
 XU Yuan-yuan,ZHENG Li-xin,ZHOU Kai-ting.The Technology of LabWindows/CVI Calling on Matlab Engine[J].Journal of Huaqiao University(Natural Science),2007,28(4):365.[doi:10.3969/j.issn.1000-5013.2007.04.008]
[2]张江源,林福泳.基于离散元的多分辨率信号去噪新方法[J].华侨大学学报(自然科学版),2013,34(2):130.[doi:10.11830/ISSN.1000-5013.2013.02.0130]
 ZHANG Jiang-yuan,LIN Fu-yong.A New Method of Signal De-Noising by Multi-Resolution Analysis Based on Discrete Element[J].Journal of Huaqiao University(Natural Science),2013,34(4):130.[doi:10.11830/ISSN.1000-5013.2013.02.0130]
[3]陆在宝,徐伟铭,肖桂荣.水土保持措施布局影响因子的多尺度分析[J].华侨大学学报(自然科学版),2016,37(6):725.[doi:10.11830/ISSN.1000-5013.201606013]
 LU Zaibao,XU Weiming,XIAO Guirong.Multi-Scale Analysis on Impact Factors of Layout of Soil and Water Conservation Measures[J].Journal of Huaqiao University(Natural Science),2016,37(4):725.[doi:10.11830/ISSN.1000-5013.201606013]

备注/Memo

备注/Memo:
收稿日期: 2018-06-23
通信作者: 常雨芳(1980-),女,副教授,博士,主要从事智能配电系统和微网能源系统的优化设计与控制的研究.E-mail:changyf@hbut.edu.cn.
基金项目: 国家自然科学基金资助项目(61601176); 湖北省自然科学基金资助项目(2016CFB512)
更新日期/Last Update: 2019-07-20