[1]侯森,马翠,贾胜勇,等.牛粪炭@Fe3O4催化臭氧处理煤气化废水的特性实验[J].华侨大学学报(自然科学版),2019,40(3):356-362.[doi:10.11830/ISSN.1000-5013.201902009]
 HOU Sen,MA Cui,JIA Shengyong,et al.Study on Treatment of Coal Gasification Wastewater by Catalytic Ozonation of Cow-Dung Based Activated Carbon@Fe3O4[J].Journal of Huaqiao University(Natural Science),2019,40(3):356-362.[doi:10.11830/ISSN.1000-5013.201902009]
点击复制

牛粪炭@Fe3O4催化臭氧处理煤气化废水的特性实验()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第3期
页码:
356-362
栏目:
出版日期:
2019-05-20

文章信息/Info

Title:
Study on Treatment of Coal Gasification Wastewater by Catalytic Ozonation of Cow-Dung Based Activated Carbon@Fe3O4
文章编号:
1000-5013(2019)03-0356-07
作者:
侯森 马翠 贾胜勇 何争光
郑州大学 水利与环境学院, 河南 郑州 450001
Author(s):
HOU Sen MA Cui JIA Shengyong HE Zhengguang
School of Water Resources and Environment, Zhengzhou University, Zhengzhou 450001, China
关键词:
高级臭氧氧化 羟基自由基 煤气化废水 化学需氧量去除率 UV254去除率
Keywords:
advanced ozonation hydroxyl radical coal gasification wastewater chemical oxygen demand removal rate UV254 removal rate
分类号:
X703
DOI:
10.11830/ISSN.1000-5013.201902009
文献标志码:
A
摘要:
采用催化臭氧氧化工艺处理煤气化废水生化出水.以廉价牛粪为原料制作生物活性炭,通过共沉淀法制得磁性催化剂牛粪炭@Fe3O4,并研究pH值、臭氧及催化剂投加量对催化效果的影响.实验结果表明:在臭氧体积流量为0.6 L·min-1,质量浓度为4.45 mg·L-1,催化剂投加量为2 g·L-1,初始pH值为7.2的条件下,化学需氧量(COD),UV254的去除率分别达到72.4%,91.4%.利用三维荧光光谱(3D-EEM)和5日生化需氧量(BOD5)测定分析,催化臭氧体系对废水中的有机物质具有良好的去除效果,出水可生化性显著提升.利用电子顺磁共振波谱仪(EPR)检测分析,牛粪炭@Fe3O4可以促进催化臭氧化体系·OH的产生.
Abstract:
The catalytic ozonation process was used to treat the biological pretreated coal gasification wastewater. The bioactive carbon was made from cheap cow dung. And the magnetic catalyst cow-dung based activated carbon@Fe3O4 was prepared by co-precipitation method. The effects of pH value, ozone and catalyst dosage on the catalytic performance were studied. The results showed that chemical oxygen demand(COD)and UV254 removal rate reached at 72.4% and 91.4% respectively under the conditions of ozone inlet rate 0.6 L·min-1, ozone concentration 4.45 mg·L-1, catalyst dosage 2 g·L-1 and initial pH value 7.2. The results of three dimensional-excitation matrix fluorescence spectroscopy(3D-EEM)and five-day biochemical oxygen demand(BOD5)showed that the catalytic ozone system had a good removal effect on the organic matter in wastewater, and the biodegradability of effluent was significantly improved. Electron paramagnetic resonance spectrometer(EPR)test confirmed that cow-dung based activated carbon@Fe3O4 could improve the effect of ozone treatment by promoting the production of ·OH.

参考文献/References:

[1] 任源,韦朝海,吴超飞,等.焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报,2007,27(7):1094-1100.DOI:10.3321/j.issn:0253-2468.2007.07.004.
[2] 张冉.非均相催化臭氧氧化深度处理煤化工废水[D].哈尔滨:哈尔滨工业大学,2011.
[3] 刘则华,刘锡建,张文启,等.臭氧技术在污水处理中的应用研究进展[J].上海工程技术大学学报,2008,22(2):141-146.DOI:10.3969/j.issn.1009-444X.2008.02.011.
[4] 陈炜彧,李旭芳,马鲁铭.铁基催化剂催化臭氧深度处理煤化工废水[J].环境工程学报,2018(1):86-92.DOI:10.12030/j.cjee.201706031.
[5] 廖润华,李月明,成岳,等.泡沫陶瓷负载锰氧化物的制备及催化臭氧化苯酚研究[J].工业水处理,2014,34(12):25-27.DOI:10.11894/1005-829x.2014.34(12).025.
[6] 敖涵婷,曹威,阚晋,等.载锆玉米秸秆生物炭的结构表征及磷吸附效果[J].华侨大学学报(自然科学版),2018,39(6):71-78.DOI:10.11830/ISSN.1000-5013.201807029.
[7] 马黎明.活性炭负载TiO_2催化臭氧处理造纸废水的实验研究[D].广州:华南理工大学,2011.
[8] 张彬,宋磊.活性炭材料的孔径结构对SO吸附性能的影响[J].华侨大学学报(自然科学版),2014,35(3):293-298.DOI:10.11830/ISSN.1000-5013.2014.03.0293.
[9] 尹丽,邹海燕,费陶,等.牛粪源生物炭对水中甲基紫的吸附动力学和热力学[J].环境化学,2017(12):2650-2657.DOI:10.7524/j.issn.0254-6108.2017051704
[10] 彭芬,熊莲,王璨,等.生物质活性炭的制备及吸附性能研究[J].广州化工,2018,46(23):47-49.DOI:10.3969/j.issn.1001-9677.2018.23.020.
[11] 隋泽华,王娜,魏欣,等.荞麦壳活性炭的制备及其表征[J].化工新型材料,2018,46(12):222-224.
[12] MA Cui,HE Zhengguang,JIA Shengyong,et al.Treatment of stabilized landfill leachate by fenton-like process using Fe3O4, particles decorated Zr-pillared bentonite[J].Ecotoxicology and Environmental Safety,2018,161:489-496.DOI:10.1016/j.ecoenv.2018.06.031.
[13] 国家环境保护局标准处.水质化学需氧量的测定重铬酸盐法: GB 11914-1989[S].北京:中国标准出版社,1990.
[14] FUERTES A,TARTAJ P.A facile route for the preparation of superparamagnetic porous carbons[J].Chemistry of Materials,2006,18(6):1675-1679.DOI:10.1021/cm052695e.
[15] ANDREOZZI R,CAPRIO V,INSOLA A,et al.Advanced oxidation processes(AOP)for water purification and recovery[J].Catalysis Today,1999,53(1):51-59.DOI:10.1016/S0920-5861(99)00102-9.
[16] 蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].土木建筑与环境工程,2002,24(2):61-65.
[17] CHEN Wen,WESTEROFF P,LEENHEER J,et al.Fluorescence excitation: Emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science and Technology,2003,37(24):5701-5710.DOI:10.1021/es034354c.
[18] 李炳智.臭氧氧化处理含氯代硝基苯类废水机理及其强化生物降解性的研究[D].杭州:浙江大学,2010.

相似文献/References:

[1]袁鹏飞,刘亚琦,张寒旭,等.硅藻土负载纳米Fe3O4催化臭氧处理渗滤液膜滤浓缩液混沉出水[J].华侨大学学报(自然科学版),2020,41(2):215.[doi:10.11830/ISSN.1000-5013.201911032]
 YUAN Pengfei,LIU Yaqi,ZHANG Hanxu,et al.Nano-Fe3O4/Diatomite Catalytic Ozone Treatment of Leachate Membrane Filtration Concentrate[J].Journal of Huaqiao University(Natural Science),2020,41(3):215.[doi:10.11830/ISSN.1000-5013.201911032]

备注/Memo

备注/Memo:
收稿日期: 2019-02-18
通信作者: 何争光(1963-),教授,博士,博士生导师,主要从事水污染控制理论与技术,水处理高级氧化技术,以及新技术、新工艺和新材料的开发的研究.E-mail:hezhengguang163@163.com.
基金项目: 国家十三五水专项(2017ZX07602-001-002)
更新日期/Last Update: 2019-05-20