参考文献/References:
[1] MALKIEL B G,FAMA E F.Efficient capital markets: A review of theory and empirical work[J].Journal of Finance,1970,25(2):383-417.DOI:10.2307/2325486.
[2] 杜威望,肖曙光.FF五因子模型在中国股票市场的改进研究[J].华侨大学学报(哲学社会科学版),2018(3):39-53.DOI:10.16067/j.cnki.35-1049/c.2018.03.004.
[3] KIM K J.Financial time series forecasting using support vector machines[J].Neurocomputing,2003,55(1/2):307-319.DOI:10.1016/S0925-2312(03)00372-2.
[4] SOMANI P,TALELE S,SAWANT S.Stock market prediction using Hidden Markov Model[C]//IEEE 7th Joint International Information Technology and Artificial Intelligence Conference.Chongqing:IEEE Press,2014:89-92.DOI:10.1109/ITAIC.2014.7065011.
[5] CHEN Kai,ZHOU Yi,DAI Fangyan.A LSTM-based method for stock returns prediction: A case study of China stock market[C]//IEEE International Conference on Big Data.Santa Clara:IEEE Press,2015:2823-2824.DOI:10.1109/BigData.2015.7364089.
[6] DI PERSIO L,HONCHAR O.Artificial neural networks architectures for stock price prediction: Comparisons and applications[J].International Journal of Circuits, Systems and Signal Processing,2016,10:403-413.
[7] YANG Bing,GONG Zijia,YANG Wenqi.Stock market index prediction using deep neural network ensemble[C]//36th Chinese Control Conference.Dalian:IEEE Press,2017:3882-3887.DOI:10.23919/ChiCC.2017.8027964.
[8] BAO Wei,YUE Jun,RAO Yulei.A deep learning framework for financial time series using stacked autoencoders and long-short term memory[J].Plos One,2017,12(7):e0180944.DOI:10.6084/m9.figshare.5028110.
[9] ZHONG Weiping,ZHANG Lili.The prediction research of safety stock based on the combinatorial forecasting model[C]//Proceedings of the 2015 International Conference on Computational Science and Engineering.Paris:Atlantis Press,2015:200-206.
[10] ZHANG Xiangzhou,HU Yong,XIE Kang,et al.A causal feature selection algorithm for stock prediction modeling[J].Neurocomputing,2014,142:48-59.DOI:10.1016/j.neucom.2014.01.057.
[11] AKITA R,YOSHIHARA A,MATSUBARA T,et al.Deep learning for stock prediction using numerical and textual information[C]//IEEE/ACIS 15th International Conference on Computer and Information Science.Okayama:IEEE Press,2016:1-6.DOI:10.1109/ICIS.2016.7550882.
[12] DING Xiao,ZHANG Yue,LIU Ting,et al.Deep learning for event-driven stock prediction[C]//International Conference on Artificial Intelligence.Buenos Aires:AAAI Press,2015:2327-2333.DOI:10.1109/ICALIP.2010.56851 87.
[13] MEZHAR A,RAMDANI M,EIMZABI A.Exploiting noisy data normalization for stock market prediction[J].Journal of Engineering and Applied Sciences,2017,12(1):69-77.DOI:10.3923/jeasci.2017.69.77.
[14] NELSON D M Q,PEREIRA A C M,DE OLIVEIRA R A.Stock market’s price movement prediction with LSTM neural networks[C]//International Joint Conference on Neural Networks.Anchorage:IEEE Press,2017:1419-1426.
[15] SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681.DOI:10.1109/78.650093.
[16] EYRAUD-LOISEL A.Backward stochastic differential equations with enlarged filtration: Option hedging of an insider trader in a financial market with jumps[J].Stochastic Processes and Their Applications,2005,115(11):1745-1763.DOI:10.1016/j.spa.2005.05.006.
[17] ZHUGE Qun,XU Lingyu,ZHANG Gaowei.LSTM neural network with emotional analysis for prediction of stock price[J].Engineering Letters,2017,25(2):167-175.
[18] SINGH R,SRIVASTAVA S.Stock prediction using deep learning[J].Multimedia Tools and Applications,2017,76(18):18569-18584.DOI:10.1007/s11042-016-4159-7.
[19] FISCHER T,KRAUSS C.Deep learning with long short-term memory networks for financial market predictions[J].Fau Discussion Papers in Economics,2017,270(2):1-32.DOI:10.1016/j.ejor.2017.11.054.
[20] LAVRENKO V,SCHMILL M,LAWRIE D,et al.Mining of concurrent text and time series[C]//Proceedings of the KDD 2000 Conference Text Mining Workshop.Doha:[s.n.],2000:37-44.DOI:10.1017/CBO9781107415324.004.
相似文献/References:
[1]范慧琳.机器学习的若干方法分析[J].华侨大学学报(自然科学版),1995,16(1):116.[doi:10.11830/ISSN.1000-5013.1995.01.0116]
Fan Huilin.An Analysis of Several Methods of Machine Learning[J].Journal of Huaqiao University(Natural Science),1995,16(2):116.[doi:10.11830/ISSN.1000-5013.1995.01.0116]
[2]洪铭,汪鸿翔,刘晓芳,等.采用负相关学习的SVM集成算法[J].华侨大学学报(自然科学版),2018,39(6):942.[doi:10.11830/ISSN.1000-5013.201611103]
HONG Ming,WANG Hongxiang,LIU Xiaofang,et al.SVM Ensembles Algorithm Using Negative Correlation Learning[J].Journal of Huaqiao University(Natural Science),2018,39(2):942.[doi:10.11830/ISSN.1000-5013.201611103]
[3]李威宏,童昕,李占福,等.集成学习在直线振动筛的应用及参数优化[J].华侨大学学报(自然科学版),2020,41(6):695.[doi:10.11830/ISSN.1000-5013.201912026]
LI Weihong,TONG Xin,LI Zhanfu,et al.Application and Parameter Optimization of Ensemble Learning in Linear Vibrating Screen[J].Journal of Huaqiao University(Natural Science),2020,41(2):695.[doi:10.11830/ISSN.1000-5013.201912026]