[1]邹小波,王佳斌,詹敏.Spark平台下KNN-ALS模型推荐算法[J].华侨大学学报(自然科学版),2019,40(2):264-268.[doi:10.11830/ISSN.1000-5013.201703071]
 ZOU Xiaobo,WANG Jiabin,ZHAN Min.Recommendation Algorithm of KNN-ALS Model Based on Spark Platform[J].Journal of Huaqiao University(Natural Science),2019,40(2):264-268.[doi:10.11830/ISSN.1000-5013.201703071]
点击复制

Spark平台下KNN-ALS模型推荐算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第2期
页码:
264-268
栏目:
出版日期:
2019-03-20

文章信息/Info

Title:
Recommendation Algorithm of KNN-ALS Model Based on Spark Platform
文章编号:
1000-5013(2019)02-0264-05
作者:
邹小波 王佳斌 詹敏
华侨大学 工学院, 福建 泉州 362021
Author(s):
ZOU Xiaobo WANG Jiabin ZHAN Min
Engineering Institude, Huaqiao University, Quanzhou 362021, China
关键词:
推荐算法 KNN-ALS模型 协同过滤 Spark平台 矩阵分解
Keywords:
recommendation algorithm KNN-ALS model collaborative filtering Spark platform matrix factorization
分类号:
TP391.1
DOI:
10.11830/ISSN.1000-5013.201703071
文献标志码:
A
摘要:
考虑Spark大数据平台内存计算框架在迭代计算的优势,提出Spark平台下KNN-ALS模型的推荐算法.针对矩阵分解算法只考虑隐含信息而忽视相似度信息的缺陷,将相似度信息加入评分预测中,并采用适合并行化的交替最小二乘法进行模型最优.在MovieLens数据集上的实验表明:该算法能够提高协同过滤推荐算法在大数据集下的处理效率,且加速比也达到并行处理的线性要求,相比其他方法有较好的精度.
Abstract:
Taking into account the memory computing advantage of Spark framework in iterative computation, the KNN-ALS model of recommendation algorithm based on Spark is proposed in this paper. The matrix factorization algorithm only considers the implicit information but ignores the similarity information, the model adds the similarity information into the rating prediction and then use the method of alternating least squares to optimize the model. From the experiments on the MovieLens dataset, the algorithm can improve the processing efficiency of the collaborative filtering algorithm in large data set, and also got a regular parameter of speedup in parallel processing. Furthermore, the proposed model have better accuracy than other methods.

参考文献/References:

[1] AMATRIAIN X.Past, present, and future of recommender systems: An industry perspective[C]//International Conference on Intelligent User Interfaces.Boston:ACM,2016:211-214.DOI:10.1145/2959100.2959144.
[2] JANNACH D,FELFERNIDG A,FRIEDRICH G.推荐系统[M].蒋凡,译.北京:人民邮电出版社,2013:1-8.
[3] 孟祥武,刘树栋,张玉洁,等.社会化推荐系统研究[J].软件学报,2015,26(6):1356-1372.DOI:10.13328/j.cnki.jos.004831.
[4] KOREN Y,BELL R.Advances in collaborative filtering[M].Berlin:Springer,2011:145-186.DOI:10.1007/978-1-4899-7637-6_3.
[5] SU Xiaoyuan,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J].Advances in Artificial Intelligence,2009(12):1-19.DOI:10.1155/2009/421425.
[6] SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]//International Conference on World Wide Web.New York:ACM,2001:285-295.DOI:10.1145/371920.372071.
[7] BILLSUS D,PAZZANI M J.Learning collaborative information filters[C]//Proceedings of the Fifteenth International Conference on Machine Learning.San Francisco:Morgan Kaufmann Publishers Inc,1998:46-54.
[8] SALAKHUTDINOV R,MNIH A.Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems.Vancouver: Curran Associates Inc,2007:1257-1264.
[9] SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
[C]//International Conference on Machine Learning.New York:ACM,2008:880-887.DOI:10.1145/1390156.13902 67.
[10] WANG Chong,BLEI D M.Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2011:448-456.DOI:10.1145/2020408.2020480.
[11] WANG Hao,WANG Naiyan,YEUNG D Y.Collaborative deep learning for recommender systems[C]//Proceeding KDD’15 Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2015:1235-1244.DOI:10.1145/2783258.2783273.
[12] ZHANG Zike,ZHOU Tao,ZHANG Yicheng.Tag-aware recommender systems: A state-of-the-art survey[J].Journal of Computer Science and Technology,2011,26(5):767-777.DOI:10.1007/S11390-011-0176-1.
[13] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37.DOI:10.1109/MC.2009.263.
[14] SYMEONIDIS P.Matrix and tensor decomposition in recommender systems[C]//ACM Conference on Recommender Systems.Boston:ACM,2016:429-430.DOI:10.1145/2959100.2959195.
[15] 张川.基于矩阵分解的协同过滤推荐算法研究[D].长春:吉林大学,2013:29-50.
[16] PARASCHAKIS D.Recommender systems from an industrial and ethical perspective[C]//ACM Conference on Recommender Systems.New York:ACM,2016:463-466.DOI:10.1145/2959100.2959101.
[17] WHITE T.Hadoop权威指南[M].3版.华东师范大学数据科学与工程学院,译.北京:清华大学出版社,2015.
[18] 杜江,张铮,张杰鑫,等.MapReduce并行编程模型研究综述[J].计算机科学,2015,42(增刊1):2635-2642.
[19] KARAU H,KONWINSKI A,WENDELL P,et al.Spark快速大数据分析[M].王道远,译.北京:人民邮电出版社,2015:187-209.
[20] 李卫平,杨杰.基于随机梯度矩阵分解的社会网络推荐算法[J].计算机应用研究,2014,31(6):1654-1656.DOI:10.3969/j.issn.1001-3695.2014.06.011.
[21] ZHOU Yunhong,WILKINSON D,SCHREIBER R,et al.Large-scale parallel collaborative filtering for the netflix prize[C]//Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management.Berlin:Springer-Verlag,2008:337-348.DOI:10.1007/978-3-540-68880-8_32.

备注/Memo

备注/Memo:
收稿日期: 2017-03-28
通信作者: 王佳斌(1974-),男,副教授,博士,主要从事物联网、云计算、大数据、智能仪器的研究.E-mail:fatwang@hqu.edu.cn.
基金项目: 国家自然科学基金青年科学基金资助项目(61505059); 福建省厦门市科技局产学研科技创新项目(3502Z20173046); 华侨大学研究生科研创新能力培养计划项目(1511422010)
更新日期/Last Update: 2019-03-20