参考文献/References:
[1] NAKOV P,RITTER A,ROSENTHAL S,et al.SemEval-2016 task 4: Sentiment analysis in twitter[C]//International Workshop on Semantic Evaluation.San Diego:[s.n.],2016:1-18.DOI:10.18653/v1/S16-1001.
[2] WAN Xiaojun. Using bilingual knowledge and ensemble techniques for unsupervised Chinese sentiment analysis
[C]//Conference on Empirical Methods in Natural Language Processing.Hawaii:DBLP,2008:553-561.DOI:10.3115/1613715.1613783.
[3] WAN Xiaojun.Co-training for cross-lingual sentiment classification[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP.Singapore:DBLP,2009:235-243.DOI:10.3115/1687878.1687913.
[4] LU Bin, TAN Chenhao, CARDIE C,et al.Joint bilingual sentiment classification with unlabeled parallel corpora [C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies.Oregon:DBLP,2011:320-330.
[5] TANG Xuewei,WAN Xiaojun.Learning bilingual embedding model for cross-language sentiment classification[C]//IEEE/WIC/ACM International Joint Conferences on Web Intelligence(WI)and Intelligent Agent Technologies(IAT).Warsaw:IEEE Press,2014:134-141.DOI:10.1109/WI-IAT.2014.90.
[6] 方圆.跨语言文本情感分类技术研究[D].厦门:华侨大学,2015.
[7] ZHOU Huiwei,CHEN Long,SHI Fulin,et al.Learning bilingual sentiment word embeddings for cross-language sentiment classification[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Beijing:[s.n.],2015:430-440.DOI:10.3115/v1/P15-1042.
[8] ZHOU Huiwei,YANG Yunlong,LIU Zhuang,et al.Jointly learning bilingual sentiment and semantic representations for cross-language sentiment classification[C]//China Conference on Information Retrieval.Shanghai:Springer,2017:149-160.DOI:10.1007/978-3-319-68699-8_12.
[9] ZHOU Xinjie,WAN Xiaojun,XIAO Jiangguo.Attention-based LSTM network for cross-lingual sentiment classification[C]//Conference on Empirical Methods in Natural Language Processing.Austin:Association for Computational Linguistics,2016:247-256.DOI:10.18653/v1/D16-1024.
[10] BEN-DAVID S,BLITZER J,CRAMMER K,et al.Analysis of representations for domain adaptation[C]//International Conference on Neural Information Processing Systems.Vancouver:DBLP,2006:137-144.
[11] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems.Montreal:MIT Press,2014:2672-2680.
[12] GANIN Y,LEMPITSKY V.Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning.Lille:arXiv,2014:1180-1189.
[13] PENNINGTON J,SOCHER R,MANNING C.GloVe: Global vectors for word representation[C]//Conference on Empiricial Methods in Natural Language Processing.Doha:[s.n.],2014:1532-1543.DOI:10.3115/v1/D14-1162.
[14] TAI K S,SOCHER R,MANNING C D.Improved semantic representations from tree-structured long short-term memory networks[J].Computer Science,2015,5(1):36.DOI:10.3115/v1/P15-1150.
[15] IYER A,NATH S,SARAWAGI S.Maximum mean discrepancy for class ratio estimation: Convergence bounds and kernel selection[C]//Proceedings of the 31st International Conference on Machine Learning.Beijing:JMLR org,2014:1-530.
[16] GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].Journal of Machine Learning Research,2016,17(1):2096-2030.DOI:10.1007/978-3-319-58347-1_10.