[1]王淑青,毛月祥,袁晓辉.有限状态机的多AGV路径优化策略[J].华侨大学学报(自然科学版),2019,40(2):239-244.[doi:10.11830/ISSN.1000-5013.201805047]
 WANG Shuqing,MAO Yuexiang,YUAN Xiaohui.Multi-AGV Path Optimization Strategy Based on Finite State Machines[J].Journal of Huaqiao University(Natural Science),2019,40(2):239-244.[doi:10.11830/ISSN.1000-5013.201805047]
点击复制

有限状态机的多AGV路径优化策略()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第2期
页码:
239-244
栏目:
出版日期:
2019-03-20

文章信息/Info

Title:
Multi-AGV Path Optimization Strategy Based on Finite State Machines
文章编号:
1000-5013(2019)02-0239-06
作者:
王淑青1 毛月祥1 袁晓辉2
1. 湖北工业大学 太阳能高效利用湖北省协同创新中心, 湖北 武汉 430068;2. 华中科技大学 水电与数字化工程学院, 湖北 武汉 430074
Author(s):
WANG Shuqing1 MAO Yuexiang1 YUAN Xiaohui2
1. Hubei Collaborative Innovation Center for High-Efficiency Utilization of Solar Enerty, Hubei University of Technology, Wuhan 430068, China; 2. School of Hydropower and Digital Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
关键词:
自动导引车 路径规划 有限状态机 A*算法 无冲突
Keywords:
automatic guided vehicle path planning finite state machine A* algorithm non-conflicting
分类号:
TP242.6
DOI:
10.11830/ISSN.1000-5013.201805047
文献标志码:
A
摘要:
为解决多自动运输引导车(AGV)在实际物流中易发生冲突、堵塞的问题,提出一种基于有限状态机模型的实时路径规划方法.通过A*算法对自动导引运输车系统(AGVS)进行预路径规划,以工作路径长度作为适应度函数,对不同任务的AGV进行优先级分配;然后,引入有限状态机的模型,动态地对不同任务的AGV进行协同控制.若AGV之间存在路径冲突点,通过去交叉法,在优先级低的AGV中暂设冲突节点为障碍物状态.对优先级低的AGV重新进行路径规划,优先级高的AGV继续运行,实现AGVS的无冲突发生.仿真结果表明:该方法在保证工作路径是最优的同时,能有效地避免AGV在物流运输中的碰撞,实现系统调度过程中无冲突的发生,提高系统的效率.
Abstract:
A real-time path planning method based on finite state machine model was proposed for dealing with automatic guided vehicle(AGV)conflicts and congestion problems in real logistics. A* algorithm of automatic guided vehicle(AGVS)is used to implement pre-path planning. Established path length of the fitness function, through fitness function allocation of priority for the AGV. Finite state machine model has been built for achieving collaborative control of the AGV. When the obstacles are in the path, by using removing cross method, collision node of the low-priority AGV will be temporarily set as an obstacle state, then, planning new path for the higher priority AGV, the non-conflicting operation of the AGVS is achieved. The simulation results show that the proposed strategy ensures that the path is optimal and can effectively avoid AGV collision in logistics transportation, realize non-conflict in system scheduling, and improve the system efficiency.

参考文献/References:

[1] QIU Ling,HSU W J.Scheduling and routing alorithms for AGVS: A survey[J].International Journal of Product on Research,2002,40(3):745-760.DOI:10.1080/00207540110091712.
[2] FAZLOLLAHTABAR H,SAIDI-MEHRABAD M,MASEHIAN E.Mathematical model for deadlock resolution in multiple AGV scheduling and routing network: A case study[J].Industrial Robot,2015,42(3):252-263.DOI:10.1108/IR-12-2014-0437.
[3] SMOLIC-ROCAK N,BOGDAN S,KOVACIC Z,et al.Time windows based dynamic routing in multi-AGV systems[J].IEEE Transactions on Automation Science and Engineering,2010,7(1):151-155.DOI:10.1109/TASE.2009.2016350
[4] HAN Zengliang,WANG Dongqing,FENG Liu,et al.Multi-AGV path planning with double-path constraints by using an improved genetic algorithm[J].Plos One,2017,12(7):e0181747.DOI:10.1371/journal.pone.0181747.
[5] ALCAIDEA D,CHUB C,KATSC V,et al.Cyclic multiple-robot scheduling with time-window constraints using a critical path approach[J].European Journal of Operational Research,2007,177(1):147-162.DOI:10.1016/j.ejor.2005.11.019.
[6] DRAGANJAC I,MIKLI? D,KOVA?I? Z,et al.Decentralized control of multi-AGV systems in autonomous warehousing applications[J].IEEE Transactions on Automation Science and Engineering,2016,13(4):1433-1447.DOI:10.1109/TASE.2016.2603781.
[7] 吕太之,周武,赵春霞.采用粒子群优化和B样条曲线的改进可视图路径规划算法[J].华侨大学学报(自然科学版),2018,39(1):103-108.DOI:10.11830/ISSN.1000-5013.201702101.
[8] 余婷,王飞,汲洋弘康.染缸资源的离散事件动态系统建模及优化[J].华侨大学学报(自然科学版),2014,35(1):31-35.DOI:10.11830/ISSN.1000-5013.2014.01.0031.
[9] 戴志存.AGV调度系统的设计[J].物流技术与应用,2015,20(9):149-152.DOI:10.3969/j.issn.1007-1059.2015.09.024.
[10] 王娟娟,曹凯.基于栅格法的机器人路径规划[J].农业装备与车辆工程,2009,2009(4):14-17.DOI:10.3969/j.issn.1673-3142.2009.04.004.
[11] 朱金旺.离散事件系统的Petri网控制器设计[D].合肥:合肥工业大学,2010.
[12] 黄子超.基于有限状态机的车队纵向协作策略建模与仿真[D].武汉:武汉理工大学,2013.
[13] GIRAULT J,LOISEAU J J,ROUX O H.On-line compositional controller synthesis for AGV[J].Discrete Event Dynamic Systems,2016,26(4):583-610.DOI:10.1007/s10626-015-0222-1.
[14] 伍国华,马满好.路径交叉检测与消除方法和邻节点置换方法改进TSP的解[J].计算机应用研究,2011,28(2):485-487.DOI:10.3969/j.issn.1001-3695.2011.02.021.
[15] 熊光明,李勇,王诗源.基于有限状态机的智能车辆交叉口行为预测与控制[J].北京理工大学学报,2015,35(1):34-38.DOI:10.15918/j.tbit1001-0645.2015.01.007.
[16] 冯海双.AGV自动运输系统调度及路径规划的研究[D].哈尔滨:哈尔滨工业大学,2013.

相似文献/References:

[1]柳在鑫,王进戈,朱维兵,等.双圆弧优化算法的足球机器人路径规划[J].华侨大学学报(自然科学版),2008,29(2):190.[doi:10.11830/ISSN.1000-5013.2008.02.0190]
 LIU Zai-xin,WANG Jin-ge,ZHU Wei-bing,et al.Soccer Robot Path Planning Based on Modified Bi-Arc Algorithm[J].Journal of Huaqiao University(Natural Science),2008,29(2):190.[doi:10.11830/ISSN.1000-5013.2008.02.0190]
[2]彭臻,王田,李晨阳,等.采用蚁群算法的移动摄像头探访规划[J].华侨大学学报(自然科学版),2014,35(5):533.[doi:10.11830/ISSN.1000-5013.2014.05.0533]
 PENG Zhen,WANG Tian,LI Chen-yang,et al.Visit Schedule of Mobile Cameras Base on Ant Colony Optimization[J].Journal of Huaqiao University(Natural Science),2014,35(2):533.[doi:10.11830/ISSN.1000-5013.2014.05.0533]
[3]贾丙佳,李平.邻近障碍物整体化的机器人路径规划[J].华侨大学学报(自然科学版),2019,40(6):799.[doi:10.11830/ISSN.1000-5013.201903010]
 JIA Bingjia,LI Ping.Robot Path Planning With Integration of Neighbouring Obstacles[J].Journal of Huaqiao University(Natural Science),2019,40(2):799.[doi:10.11830/ISSN.1000-5013.201903010]
[4]葛文雅,李平.移动机器人路径规划安全A*算法[J].华侨大学学报(自然科学版),2022,43(5):658.[doi:10.11830/ISSN.1000-5013.202107028]
 GE Wenya,LI Ping.Safe A* Algorithm of Mobile Robot Path Planning[J].Journal of Huaqiao University(Natural Science),2022,43(2):658.[doi:10.11830/ISSN.1000-5013.202107028]

备注/Memo

备注/Memo:
收稿日期: 2017-03-29
通信作者: 王淑青(1969),女, 教授,博士,主要从事智能控制、计算机控制技术和电力系统自动化的研究.E-mail:494493276@qq.com.
基金项目: 国家自然科学基金资助项目(51379080)
更新日期/Last Update: 2019-03-20