[1]夏蓓鑫,简铮,高雅,等.多变量过程监控的D控制图[J].华侨大学学报(自然科学版),2018,39(6):920-925.[doi:10.11830/ISSN.1000-5013.201707056]
 XIA Beixin,JIAN Zheng,GAO Ya,et al.D Control Chart for Multivariable Process Monitoring[J].Journal of Huaqiao University(Natural Science),2018,39(6):920-925.[doi:10.11830/ISSN.1000-5013.201707056]
点击复制

多变量过程监控的D控制图()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第6期
页码:
920-925
栏目:
出版日期:
2018-11-20

文章信息/Info

Title:
D Control Chart for Multivariable Process Monitoring
文章编号:
1000-5013(2018)06-0920-06
作者:
夏蓓鑫1 简铮2 高雅2 陶宁蓉3
1. 上海大学 管理学院, 上海 200444;2. 上海大学 机电工程与自动化学院, 上海 200072;3. 上海海洋大学 工程学院, 上海 201306
Author(s):
XIA Beixin1 JIAN Zheng2 GAO Ya2 TAO Ningrong3
1. School of Management, Shanghai University, Shanghai 200444, China; 2. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China; 3. College of Engineering, Shanghai Ocean University, Shanghai 201306, China
关键词:
D控制图 多元统计过程控制 支持向量数据描述 平均运行链长
Keywords:
D control chart multivariate statistical process control support vector data description average run length
分类号:
TP206.3;O213.1
DOI:
10.11830/ISSN.1000-5013.201707056
文献标志码:
A
摘要:
针对如何将大数据技术与传统的多元控制图相结合,以获得一个具有自学习性的控制图的问题,以支持向量数据描述(SVDD)为构建基础,提出一个基于支持向量数据描述的D控制图.该D控制图通过对在控数据的学习,自适应地构建出自己的监控模型.仿真实验及工业实例表明:D控制图在多变量制造过程中的表现优于T2控制图,是一个理想的监控模型.
Abstract:
For the issue of how to combine the big data technology with the traditional multivariate control chart to get a control chart with self-learning. Based on support vector data description(SVDD), a D control chart with SVDD is proposed in this paper. The D control chart can adaptively construct its own monitoring model through being trained by the in-control data. Simulation results and industrial examples show that the D control chart has a better performance compared with the T2 control chart for the multivariable manufacturing process, and it is a promising monitoring model.

参考文献/References:

[1] 张鹏伟,苏秦,李乘龙.面向小批量生产过程的多变量贝叶斯控制图[J].系统工程学报,2013,28(3):387-393.DOI:10.3969/j.issn.1000-5781.2012.01.013.
[2] 汪洋,陈向东,闪四清.基于ARL的T2控制图多元质量特性统计设计经济模型[J].工业工程,2013,16(4):133-139.
[3] LIANG Wenjuan,PU Xiaolong,XIANG Dongdong.A distribution-free multivariate CUSUM control chart using dynamic control limits[J].Journal of Applied Statistics,2017,44(11):1-19.DOI:10.1080/02664763.2016.1247784.
[4] WOODALL W H,NCUBE M M.Multivariate CUSUM quality-control procedures[J].Technometrics,1985,27(3):285-292.DOI:10.2307/1269710.
[5] LOWRY C A,WOODALL W H,CHAMP C W,et al.A multivariate exponentially weighted moving average control chart[J].Technometrics,1992,34(1):46-53.DOI:10.2307/1269551.
[6] 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.DOI:10.16383/j.aas.2000.01.005.
[7] TAX D M J,DUIN R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20(11):1191-1199.DOI:10.1016/S0167-8655(99)00087-2.
[8] TAX D M J,DUIN R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.DOI:10.1023/B:MACH.0000008084.60811.49.
[9] BUSCEMA M.Back propagation neural networks[J].Substance Use and Misuse,1998,33(2):233-270.
[10] KOHONEN T.Essentials of the self-organizing map[J].Neural Networks,2013,37(1):52-65.DOI:10.1016/j.neunet.2012.09.018.
[11] SHI Dongfeng,GINDY N N.Tool wear predictive model based on least squares support vector machines[J].Mechanical Systems and Signal Processing,2007,21(4):1799-1814.DOI:10.1016/j.ymssp.2006.07.016.
[12] XI Lifeng.Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes[J].International Journal of Production Research,2008,46(21):5907-5933.DOI:10.1080/002075407 01358729.
[13] LAZZARETTI A E,TAX D M J,NETO H V,et al.Novelty detection and multi-class classification in power distribution voltage waveforms[J].Expert Systems with Applications,2016,45(C):322-330.DOI:10.1016/j.eswa.2015.09.048.
[14] 王佼,刘艳春.应用灰关联分析的PSO-SVR工程造价预测模型[J].华侨大学学报(自然科学版),2016,37(6):708-713.DOI:10.11830/ISSN.1000-5013.201606010.
[15] 邹心遥,陈敬伟,姚若河.采用粒子群优化的 SVM 算法在数据分类中的应用[J].华侨大学学报(自然科学版),2016,37(2):171-174.DOI:10.11830/ISSN.1000-5013.2016.02.0171.
[16] GARCÍA-ESCUDERO L A,DUQUE-PEREZ O,FERNANDEZ-TEMPRANO M,et al.Robust detection of incipient faults in VSI-fed induction motors using quality control charts[J].IEEE Transactions on Industry Applications,2017,53(3):3076-3085.DOI:10.1109/TIA.2016.2617300.
[17] MOVAFFAGH A,AMIRI A.Monotonic change point estimation in the mean vector of a multivariate normal process[J].International Journal of Advanced Manufacturing Technology,2013,69(5/6/7/8):1895-1906.

备注/Memo

备注/Memo:
收稿日期: 2017-07-22
通信作者: 夏蓓鑫(1984-),男,讲师,博士,主要从事质量管理、可靠性工程的研究.E-mail:bxxia@shu.edu.cn.
基金项目: 国家自然科学基金资助项目(71401098); 上海市高校青年教师培养资助计划(ZZSD15047)
更新日期/Last Update: 2018-11-20