[1]刘小鸣,陈士海.弹性半空间球形药包爆破引起的地表振动波形预测[J].华侨大学学报(自然科学版),2018,39(6):826-831.[doi:10.11830/ISSN.1000-5013.201804088]
 LIU Xiaoming,CHEN Shihai.Prediction of Vibration Waveform on Ground Caused byElastic Semispace Spherical Charge Blasting[J].Journal of Huaqiao University(Natural Science),2018,39(6):826-831.[doi:10.11830/ISSN.1000-5013.201804088]
点击复制

弹性半空间球形药包爆破引起的地表振动波形预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第6期
页码:
826-831
栏目:
出版日期:
2018-11-20

文章信息/Info

Title:
Prediction of Vibration Waveform on Ground Caused byElastic Semispace Spherical Charge Blasting
文章编号:
1000-5013(2018)06-0826-06
作者:
刘小鸣1 陈士海12
1. 华侨大学 土木工程学院, 福建 厦门 361021;2. 华侨大学 福建省隧道与城市地下空间工程技术研究中心, 福建 厦门 361021
Author(s):
LIU Xiaoming1 CHEN Shihai12
1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China; 2. Fujian Research Center for Tunneling and Urban Underground Space Engineering, Huaqiao University, Xiamen 361021, China
关键词:
球形药包 等效震源 地表运动 速度函数 曲线拟合
Keywords:
spherical charge equivalent source surface motion velocity function curve fitting
分类号:
TD23
DOI:
10.11830/ISSN.1000-5013.201804088
文献标志码:
A
摘要:
对球形爆源在弹性半空间内爆破引起地表质点的振动波形预测进行研究.利用等效孔穴理论,将球形药包的爆破简化为球腔压力源的作用,推导出球腔压力源p(t)作用下的等效震源强度函数;然后对Hoop点源理论的位移解进行修改,得到在球腔压力源p(t)的作用下地表质点的振动位移和速度函数;最后画出地表质点振动速度函数波形,并对波形进行拟合.根据萨道夫斯基公式和等效爆源强度函数,构造一个与装药量直接相关且更为简洁的质点振动速度函数.结果表明:构造函数与理论解得到的波形非常吻合,且验证了构造函数的适用性,实现爆破振动波形预测.
Abstract:
The prediction of vibration waveform of surface particles caused by spherical blasting source blasting is studied in elastic half space. The equivalent cavity theory is used to simplify the blasting of spherical charge to the action of spherical cavity pressure source, and the equivalent source intensity function under the action of spherical cavity pressure source p(t)is deduced. The displacement solution of Hoop point source theory is modified to obtain the vibration displacement and velocity function of surface particles under the action of spherical cavity pressure source p(t). The waveform of surface particle vibration velocity function is drawn and fitted. According to the sadovsky formula and the equivalent explosive source strength function, a more concise particle vibration velocity function directly related to the explosive charge is constructed. The results are consistent well with the waveform obtained by theoretical solution. The applicability of concise function is verified, the prediction of blasting vibration waveform is realized.

参考文献/References:

[1] SHARPE J A.The production of elastic waves by explosion pressure [J].Geophysics,1942(S2):144-154.DOI:10.1190/1.1445002.
[2] 杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算[M].北京:科学出版社,1999.
[3] BLAIR D P.The free surface influence on blastvibration [J].International Journal of Rock Mechanics and Mining Sciences,2015,77:182-191.DOI:10.1016/j.ijrmms.2015.04.006.
[4] LAMB H.On the propagation of tremors over the surface of an elastic solid[J].Proceedings of the Royal Society of London,1904,72(477-486):128-130.DOI:10.1098/rspl.1903.0029.
[5] ACHENBACH J D.Wave propagation in elastic solid[M].Amsterdam:North-Holland,1973.
[6] DE-HOOP A T.Theoretical determination of the surface motion of a uniform elastic half-space prodiced by a diltational, impulsive, point source[C]//La Propagation des Ebranlements Dans Les Milieux Hétérogènes.Marseille:Colloques Internationaux du CNRS,1961:21-32.
[7] 舍米亚金 E И.弹塑性理论的动力学问题[M].戚承志,译.北京:科学出版社,2009.
[8] JIANG Jinjun,BAIRD G,BLAIR D.Polarization and amplitude attribute of reflected plane and spherical waves[J].Geophy,1998,132:577-583.DOI:10.1046/j.1365-246X.1998.00479.x.
[9] JIANG Jinjun,BAIRD G,BLAIR D.Dynamic response of a half-space to a buried spherical source[J].Geophy,1994,119:753-765.DOI:10.1111/j.1365-246X.1994.tb04014.x.
[10] 楼矗云,刘军,蓝鹏.基于样条插值的爆破振动时域波形预测方法[J].工程爆破,2017,23(2):24-31.DOI:10.3969/j.issn.1006-7051.2017.02.005.
[11] 李洪梅,王小委,耿大新.爆破振动下地表建筑物振动位移研究[J].华东交通大学学报,2017,34(6):38-44.DOI:10.16749/j.cnki.jecjtu.2017.06.004.
[12] 张震,周传波,路世伟,等.超浅埋地铁站通道爆破暗挖地表振动传播特征[J].中南大学学报(自然科学版),2017(8):2119-2125.DOI:10.11817/j.issn.1672-7207.2017.08.020.
[13] 张在晨,林从谋,黄志波,等.爆破振动特征参量的BP小波预测[J].华侨大学学报(自然科学版),2013,34(1):77-81.DOI:1000-5013(2013)01-0077-05.
[14] 张晏,郭连军,张大宁.不同岩体条件下爆破振动衰减规律研究[J].矿业研究与开发,2015,35(9):97-99.DOI:10.13827/j.cnki.kyyk.2015.09.023.
[15] 卢文波,周俊汝,陈明,等.爆破振动主频衰减公式研究[J].工程爆破,2015,21(6):1-6.DOI:1006-7051(2015)06-0001-06.
[16] DE-HOOP A T.A modification of cagniard’s method for solving seismic pulse problems[J].Appl Sci Res,1960,8(1):349-356.DOI:10.1007/BF02920068.
[17] 林大超,白春华.爆炸地震效应[M].北京:地质出版社,2007:131-132.
[18] 陈士海,逄焕东.爆破灾害预测与控制[M].北京:煤炭工业出版社,2006:6-12.

备注/Memo

备注/Memo:
收稿日期: 2018-04-27
通信作者: 陈士海(1964-),男,教授,博士,主要从事岩土工程的研究.E-mail:cshblast@163.com.
基金项目: 国家自然科学基金资助项目(11672112); 中央高校基本科研业务费专项资金资助项目(13BS402); 华侨大学研究生科研创新基金资助项目(17013086024)
更新日期/Last Update: 2018-11-20