参考文献/References:
[1] 苏松志,李绍滋,陈淑媛,等.行人检测技术综述[J].电子学报,2012,40(4):814-820.DOI:10.3969/j.issn.0372-2112.2012.04.031.
[2] ENZWEILER M,GAVRILA D.Monocular pedestrian detection: Survey and experiments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2179-2195.
[3] ZHAO Liang,THORPE C E.Stereo-and neural network-based pedestrian detection[J].IEEE Transactions on Intelligent Transportation Systems,2000,1(3):148-154.DOI:10.1109/6979.892151.
[4] VIOLA P,JONES M J,SNOW D.Detecting pedestrian using patterns of motion and appearance[J].Internation Journal of Computer Vision,2005,63(2):153-161.
[5] PAPAGEORGIOU C,POGGIO T.A trainable system for object detection[J].Internation Journal of Computer Vision,2000,38(1):15-33.DOI:10.1023/A:1008162616689.
[6] 姚雪琴,李晓华,周激流.基于边缘对称性和HOG的行人检测方法[J].计算机工程,2012,38(5):179-182.DOI:10.3969/j.issn.1000-3428.2012.05.055.
[7] WALK S,MAJER N,SCHINDLER K,et al.New features and insights for pedestrian detection[J].Conference on Computer Vision and Pattern Recognition,2010,119(5):1030-1037.DOI:10.1109/CVPR.2010.5540102.
[8] 孙锐,陈军,高隽.基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报,2013,35(8):1921-1926.DOI:10.3724/SP.J.1146.2012.01700.
[9] 饶钦,谢刚,钦爽.基于颜色自相似性和HOG特征的行人检测[J].小型微型计算机系统,2014,35(11):2582-2585.DOI:10.3969/j.issn.1000-1220.2014.11.040.
[10] SERMANET P,KAVUKCUOGLU K,CHINTALA S,et al.Pedestrian detection with unsupervised multi-stage feature learning[C]//IEEE Conference on Computer Vision and Pattern Recognition.Portland:IEEE Press,2013:3626-3633.DOI:10.1109/CVPR.2013.465.
[11] 田仙仙,鲍泓,徐成.一种改进HOG特征的行人检测算法[J].计算机科学,2014,41(9):320-324.DOI:10.11896/j.issn.1002-137X.2014.09.062.
[12] 刘琳,耿俊梅,顾国华,等.轮廓特征与神经网络相结合的行人检测[J].光电工程,2014,41(7):50-56.DOI:10.3969/j.issn.1003-501X.2014.07.009.
[13] 岳昊,邵春福,赵熠.基于BP神经网络的行人和自行车交通识别方法[J].北京交通大学学报,2008,32(3):46-49.DOI:10.3969/j.issn.1673-0291.2008.03.010.
[14] 曹建芳,陈俊杰,李海芳.基于Adaboost-BP神经网络的图像情感分类方法研究[J].山西大学学报(自然科学版),2013,36(3):331-337.DOI:10.13451/j.cnki.shanxi.univ(nat.sci.).2013.03.002.
[15] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[J].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,1(12):886-893.DOI:10.1109/CVPR.2005.177.