[1]林春,俞缙,陈旭,等.水力耦合条件下预制节理砂岩裂纹扩展和能量演化细观数值模拟[J].华侨大学学报(自然科学版),2018,39(4):538-544.[doi:10.11830/ISSN.1000-5013.201801012]
 LIN Chun,YU Jin,CHEN Xu,et al.Mesoscopic Numerical Simulation on Crack Expansion and Energy Evolution of Sandstone With Prefabricated Joint Under Hydro-Mechanical Coupling Condition[J].Journal of Huaqiao University(Natural Science),2018,39(4):538-544.[doi:10.11830/ISSN.1000-5013.201801012]
点击复制

水力耦合条件下预制节理砂岩裂纹扩展和能量演化细观数值模拟()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第4期
页码:
538-544
栏目:
出版日期:
2018-07-18

文章信息/Info

Title:
Mesoscopic Numerical Simulation on Crack Expansion and Energy Evolution of Sandstone With Prefabricated Joint Under Hydro-Mechanical Coupling Condition
文章编号:
1000-5013(2018)04-0538-07
作者:
林春1 俞缙1 陈旭2 蔡燕燕1 文志杰3
1. 华侨大学 福建省隧道与城市地下空间工程技术研究中心, 福建 厦门 361021;2. 东北大学 资源与土木工程学院, 辽宁 沈阳 110819;3. 山东科技大学 矿山灾害预防与控制重点实验室, 山东 青岛 266590
Author(s):
LIN Chun1 YU Jin1 CHEN Xu2 CAI Yanyan1 WEN Zhijie3
1. Fujian Engineering Technology Research Center for Tunnel and Underground Space, Huaqiao University, Xiamen 361021, China; 2. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; 3. Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China
关键词:
水力耦合 预制节理 细观数值模拟 能量耗散
Keywords:
hydraulic coupling prefabricated joint meso-numerical simulation dissipation of energy
分类号:
TU452
DOI:
10.11830/ISSN.1000-5013.201801012
文献标志码:
A
摘要:
为了研究水力耦合作用条件下预制节理砂岩三轴压缩裂纹扩展和能量演化规律,建立预制节理砂岩流固耦合数值模型,得到预制节理砂岩应力-应变曲线.通过分析平行黏结破碎演化过程,获得不同预制节理角度下微裂纹发育规律.基于颗粒流程序(PFC)离散元能量追踪体系,研究得到各细观能量变化响应和能量耗散与转换规律.分析结果表明:预制节理角度越大,试样峰值强度越大,侧向变形和轴向变形峰值应变先增大后减小,在预制节理角度为60°时取得最大值;平行黏结破碎起始于预制节理,进而扩展贯通,次生黏结破碎带始于节理面直至贯穿试样边界;试样的黏结能峰值和应变能峰值均与预制节理角度成正比,黏结强度峰值应变和应变能峰值应变与预制节理角度成反比;耗散能主要表现为摩擦作用,整个加载过程中弹性应变能吸收率最大.
Abstract:
In order to study the crack expansion and the energy evolution from the prefabricated joint sandstones under the triaxial compression test, a numerical model of prefabricated joint sandstone combining with fluid-solid coupling was established, and the stress-strain curves of prefabricated joint sandstone was obtained. The crack development under different prefabricated angles was found by analyzing the evolution process of parallel bond rupture. Based on energy tracking system from particle flow code(PFC), the microscopic energy variation and relation curves of dissipated energy were presented. The results indicate that with the increase of prefabricated joint angle, the peak strength of the sample increases, the peak strains in lateral and axial directions initially increase and then decrease, and reach maximum at 60°. The rupture of parallel bond extends from prefabricated joint, and then cuts through specimen; the secondary bond rupture begins from the joint plane, then cuts through the sample boundary. The bond strength peak and strain energy peak of samples are proportional to the prefabricated joint angle, the bond strength peak strain and strain energy peak strain of samples are inversely proportional to the prefabricated joint angle. The main dissipation energy is the friction action, and the elastic strain energy absorption is the maximum during the whole loading process.

参考文献/References:

[1] BROWN E T,OLIVEIRA D A F,INDRARATNA B.A shear-displacement criterion for soil-infilled rock discontinuities[J].Géotechnique,2010,60(8):623-633.DOI:10.13722/j.cnki.jrme.2014.04.011.
[2] 李树忱,汪雷,李术才,等.不同倾角贯穿节理类岩石试件峰后变形破坏试验研究[J].岩石力学与工程学报,2013,32(增刊2):3391-3395.
[3] 刘欣宇,刘爱华,李夕兵.充填柱状节理类岩石材料的试验研究[J].岩石力学与工程学报,2014,33(4):772-777.DOI:10.13722/j.cnki.jrme.2014.04.011
[4] 俞缙,李宏,陈旭,等.渗透压-应力耦合作用下砂岩渗透率与变形关联性三轴试验研究[J].岩石力学与工程学报,2013,32(6):1203-1213.DOI:10.3969/j.issn.1000-6915.2013.06.014.
[5] 俞缙,李宏,陈旭,等.砂岩卸围压变形过程中渗透特性与声发射试验研究[J].岩石力学与工程学报,2014,33(1):69-79.DOI:10.13722/j.cnki.jrme.2014.01.007.
[6] 徐亮,林从谋,张在晨,等.节理岩体剪切强度的计算方法及其应用[J].华侨大学学报(自然科学版),2013,34(5):570-575.DOI:10.11830/ISSN.1000-5013.2013.05.0570.
[7] 赵恺,王环玲,徐卫亚,等.贯通充填裂隙类岩石渗流特性试验研究[J].岩土工程学报,2017,39(6):1130-1136.DOI:10.11779/CJGE201706020.
[8] 高朋杰.节理岩石透水机理的试验研究[D].西安:西安科技大学,2008.
[9] 王刚,王锐,武猛猛,等.渗透压:应力耦合作用下煤体常规三轴试验的颗粒流模拟[J]. 岩土力学, 2016(增刊1):537-546. DOI:10.16285/j.rsm.2016.S1.070.
[10] 杨艳,周伟,常晓林,等.高心墙堆石坝心墙水力劈裂的颗粒流模拟[J].岩土力学,2012,33(8):2513-2520.DOI:10.16285/j.rsm.2012.08.032.
[11] 陈子全,李天斌,陈国庆,等.水力耦合作用下的砂岩声发射特性试验研究[J].岩土力学,2014,35(10):2815-2822.DOI:10.16285/j.rsm.2014.10.008.
[12] CUNDALL P A.Itasca consulting group Inc PFC2D users manual[M].Minneapolis:Itasca Consulting Group Inc,2004.
[13] SHIMIZU H,MURATA S,ISHIDA T.The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[J].Journal of Mmij,2011,48(5):712-727.DOI:10.1016/j.ijrmms.2011.04.013.
[14] 崔铁军,马云东,王来贵.顺层或逆层岩质急倾斜边坡坡角的确定[J].安全与环境学报,2017,17(2):477-482.DOI:10.13637/j.issn.1009-6094.2017.02.016.
[15] 张学朋,王刚,蒋宇静,等.基于颗粒离散元模型的花岗岩压缩试验模拟研究[J].岩土力学,2014(增刊1):99-105.
[16] 周博,汪华斌,赵文锋,等.黏性材料细观与宏观力学参数相关性研究[J].岩土力学,2012,33(10):3171-3178.DOI:10.16285/j.rsm.2014.s1.009.
[17] CUNDALL P A.Theory and background for PFC2D [M].Minneeapolis:Itasca Consluting Group Inc,2000.
[18] 谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.DOI:10.3321/j.issn:1000-6915.2005.17.001

备注/Memo

备注/Memo:
收稿日期: 2018-01-04
通信作者: 俞缙(1978-),男,教授,博士,主要从事岩土力学与地下工程方面的研究.E-mail:bugyu0717@163.com.
基金项目: 国家自然科学基金资助项目(51679093, 51774147); 福建省自然科学基金资助项目(2017J01094); 华侨大学研究生科研创新能力培育计划资助项目(1611304017)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2018-07-20