参考文献/References:
[1] NIE J,LOH A P,HANG C C.Modeling pH neutralization processes using fuzzy-neural approaches[J].Fuzzy Sets and Systems,1996,78(1):5-22.DOI:10.1016/0165-0114(95)00118-2.
[2] 韩敏,贾小勐.基于通用学习网络的pH控制过程辨识[J].大连理工大学学报,2003,43(1):119-123.DOI:10.3321/j.issn:1000-8608.2003.01.025.
[3] ABDELHADI A,GOMM J B,Yu D L,et al.Comparison of RBF and local linear model networks for nonlinear identification of a pH process[C]//Ukacc International Conference on Control.Loughborough:IEEE Press,2014:361-366.DOI:10.1109/CONTROL.2014.6915167.
[4] 齐海龙,王琪,刘立业,等.一种改进人工蜂群算法的 Wiener 模型分步辨识法[J].中国科技论文,2015(14):1671-1676.DOI:10.3969/j.issn.2095-2783.2015.14.014.
[5] ABINAYADHEVI P,PRASADS J S.Identification of pH process using hammerstein-wiener model[C]//International Conference on Intelligent Systems and Control.Coimbatore:IEEE Press,2015:1-5.DOI:10.1109/ISCO.2015.7282297.
[6] 吕游,刘吉臻,杨婷婷.基于非线性偏最小二乘回归的软测量建模及应用[J].高校化学工程学报,2014(4):818-824.DOI:10.3969/j.issn.1003-9015.2014.04.020.
[7] 王宏伟,夏浩.非均匀多采样率非线性系统的模糊辨识[J].控制与决策,2015(9):1646-1652.DOI:10.3969/j.issn.1003-9015.2014.04.020.
[8] LI Dazi,KANG Tianjiao,ZHOU Jinglin,et al.Dynamic extreme learning machine identification for nonlinear system with long time delay[C]//中国控制会议.Dalian:[s.n.].2017:2094-2098.
[9] WANG Qingchao,ZHANG Jianzhong.Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines[J].Journal of Zhejiang University Science C,2011,12(1):25-35.DOI:10.1631/jzus.C0910779.
[10] 林毅,蔡福营,袁宇熹,等.PCA-SVM模型在几丁质酶最适温度建模中的应用[J].华侨大学学报(自然科学版),2008,29(2):236-240.DOI:10.11830/ISSN.1000-5013.2008.02.0236.
[11] 杨希,钱锋,张兵,等.基于核函数主元分析的SVM建模方法及应用[J].华东理工大学学报(自然科学版),2007,33(2):259-262.DOI:10.3969/j.issn.1006-3080.2007.02.024.
[12] 王强,田学民.基于KPCA-LSSVM的软测量建模方法[J].化工学报,2011,62(10):2813-2817.DOI:10.3969/j.issn.0438-1157.2011.10.020.
[13] 李鸿坤,陈坚红,盛德仁,等.热力参数的KPCA-RBF网络建模及传感器故障诊断方法[J].振动、测试与诊断,2016,36(6):1044-1049.DOI:10.16450/j.cnki.issn.1004-6801.2016.06.002.
[14] 李军,常燕芝.基于KPCA-KMPMR的短期风电功率概率预测[J].电力自动化设备,2017,37(2):22-28.DOI:10.16081/j.issn.1006-6047.2017.02.004.
[15] 熊伟丽,王肖,陈敏芳,等.基于加权LS-SVM的青霉素发酵过程建模[J].化工学报,2012,63(9):2913-2919.DOI:10.3969/j.issn.0438-1157.2012.09.038.
[16] 李军,董海鹰.基于小波核偏最小二乘回归方法的混沌系统建模研究[J].物理学报,2008,57(8):4756-4765.DOI:10.3321/j.issn:1000-3290.2008.08.019.
[17] 汤健,柴天佑,余文,等.在线KPLS建模方法及在磨机负荷参数集成建模中的应用[J].自动化学报,2013,39(5):471-486.DOI:10.3724/SP.J.1004.2013.00471.
[18] 吕游,刘吉臻,杨婷婷,等.基于PLS特征提取和LS-SVM结合的NOx排放特性建模[J].仪器仪表学报,2013,34(11):2418-2424.DOI:10.19650/j.cnki.cjsi.2013.11.003.
[19] 莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2014(4):373-377.DOI:10.11830/ISSN.1000-5013.2014.04.0373.
[20] WANG Guicheng,XU Bing,JIANG Wenping.SVM modeling for glutamic acid fermentation process[C]//Control and Decision Conference.Yinchuan:IEEE Press,2016:5551-5555.DOI:10.1109/CCDC.2016.7531989.
[21] 李炜,徐鸿飞,倪源.基于核函数的PLS丁苯橡胶聚合转化率软测量[J].传感器与微系统,2012,31(3):143-146.DOI:10.3969/j.issn.1000-9787.2012.03.042.
[22] 徐晔,杜文莉,钱锋.基于核主元分析和最小二乘支持向量机的软测量建模[J].系统仿真学报,2007,19(17):3873-3875.DOI:10.3969/j.issn.1004-731X.2007.17.002.
相似文献/References:
[1]张观东,李军.KPCA-LSSVM方法在视频时间序列预测中应用[J].华侨大学学报(自然科学版),2018,39(2):281.[doi:10.11830/ISSN.1000-5013.201708019]
ZHANG Guandong,LI Jun.Application of KPCA-LSSVM in Video Trace and Time Series Prediction[J].Journal of Huaqiao University(Natural Science),2018,39(3):281.[doi:10.11830/ISSN.1000-5013.201708019]
[2]胡启国,何奇,曹历杰.采用EEMD-KPCA处理的IHHO-LSSVM滚动轴承寿命预测模型[J].华侨大学学报(自然科学版),2022,43(2):145.[doi:10.11830/ISSN.1000-5013.202012025]
HU Qiguo,HE Qi,CAO Lijie.IHHO-LSSVM Rolling Bearing Life Prediction Model Treated by EEMD-KPCA[J].Journal of Huaqiao University(Natural Science),2022,43(3):145.[doi:10.11830/ISSN.1000-5013.202012025]