[1]朱瑞鹤,李军.KPCA-KPLS方法在pH中和过程建模中的应用[J].华侨大学学报(自然科学版),2018,39(3):401-407.[doi:10.11830/ISSN.1000-5013.201711038]
 ZHU Ruihe,LI Jun.Research on Modeling Method for pH Neutralization Process Using KPCA-KPLS[J].Journal of Huaqiao University(Natural Science),2018,39(3):401-407.[doi:10.11830/ISSN.1000-5013.201711038]
点击复制

KPCA-KPLS方法在pH中和过程建模中的应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第3期
页码:
401-407
栏目:
出版日期:
2018-05-20

文章信息/Info

Title:
Research on Modeling Method for pH Neutralization Process Using KPCA-KPLS
文章编号:
1000-5013(2018)03-0401-07
作者:
朱瑞鹤 李军
兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070
Author(s):
ZHU Ruihe LI Jun
School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
关键词:
pH中和过程 核主成分分析 核偏最小二乘 系统建模
Keywords:
pH neutralization process kernel principal component analysis kernel partial least squares system modeling
分类号:
TP273.5
DOI:
10.11830/ISSN.1000-5013.201711038
文献标志码:
A
摘要:
针对化工过程中的具有严重非线性、不确定性、时变性的复杂pH中和过程系统建模问题,提出一种基于核主元分析(KPCA)与核偏最小二乘(KPLS)相结合的建模方法.在高维特征空间内,该方法通过KPCA有效地提取输入数据的非线性主元,利用KPLS方法将输入变量投影在潜在变量上,再用输入与输出变量之间的协方差信息提取潜在特征建立pH中和过程模型.为验证其有效性,将KPCA-KPLS方法应用到弱酸强碱中和过程、强酸强碱中和过程实例中,并与核偏最小二乘、核主元分析_支持向量机(KPCA-SVM)、核极限学习机(KELM)、极限学习机(ELM)、最小二乘支持向量机(LSSVM)、SVM等方法进行比较.实验结果表明:KPCA-KPLS方法具有很高的动态建模精度.
Abstract:
In terms of pH neutralization process modeling problem with serious nonlinearity, uncertainty and time variability in chemical process, a modeling method via kernel principal component analysis(KPCA)and kernel partial least squares(KPLS)is proposed. This method via KPCA extracts nonlinear principal element of input data in the high-dimensional feature space effectively, and then use the KPLS method project input variable to the latent variables, and extract potential characteristics of the covariance information between input and output variables to establish the pH process model. In order to validity the effectiveness of the proposed kernel-based modeling method, KPCA-KPLS method is applied to the pH neutralization processes instances which including weak acid-strong base process and strong acid-strong base process, and is compared with kernel principal component analysis-support vector machine(KPCA-SVM), kernel extreme learning machine(KELM), extreme learning machine(ELM), least squares support vector machine(LSSVM), support vector machine(SVM)methods etc. The experimental results show that the KPCA-KPLS method has a high dynamic modeling accuracy.

参考文献/References:

[1] NIE J,LOH A P,HANG C C.Modeling pH neutralization processes using fuzzy-neural approaches[J].Fuzzy Sets and Systems,1996,78(1):5-22.DOI:10.1016/0165-0114(95)00118-2.
[2] 韩敏,贾小勐.基于通用学习网络的pH控制过程辨识[J].大连理工大学学报,2003,43(1):119-123.DOI:10.3321/j.issn:1000-8608.2003.01.025.
[3] ABDELHADI A,GOMM J B,Yu D L,et al.Comparison of RBF and local linear model networks for nonlinear identification of a pH process[C]//Ukacc International Conference on Control.Loughborough:IEEE Press,2014:361-366.DOI:10.1109/CONTROL.2014.6915167.
[4] 齐海龙,王琪,刘立业,等.一种改进人工蜂群算法的 Wiener 模型分步辨识法[J].中国科技论文,2015(14):1671-1676.DOI:10.3969/j.issn.2095-2783.2015.14.014.
[5] ABINAYADHEVI P,PRASADS J S.Identification of pH process using hammerstein-wiener model[C]//International Conference on Intelligent Systems and Control.Coimbatore:IEEE Press,2015:1-5.DOI:10.1109/ISCO.2015.7282297.
[6] 吕游,刘吉臻,杨婷婷.基于非线性偏最小二乘回归的软测量建模及应用[J].高校化学工程学报,2014(4):818-824.DOI:10.3969/j.issn.1003-9015.2014.04.020.
[7] 王宏伟,夏浩.非均匀多采样率非线性系统的模糊辨识[J].控制与决策,2015(9):1646-1652.DOI:10.3969/j.issn.1003-9015.2014.04.020.
[8] LI Dazi,KANG Tianjiao,ZHOU Jinglin,et al.Dynamic extreme learning machine identification for nonlinear system with long time delay[C]//中国控制会议.Dalian:[s.n.].2017:2094-2098.
[9] WANG Qingchao,ZHANG Jianzhong.Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines[J].Journal of Zhejiang University Science C,2011,12(1):25-35.DOI:10.1631/jzus.C0910779.
[10] 林毅,蔡福营,袁宇熹,等.PCA-SVM模型在几丁质酶最适温度建模中的应用[J].华侨大学学报(自然科学版),2008,29(2):236-240.DOI:10.11830/ISSN.1000-5013.2008.02.0236.
[11] 杨希,钱锋,张兵,等.基于核函数主元分析的SVM建模方法及应用[J].华东理工大学学报(自然科学版),2007,33(2):259-262.DOI:10.3969/j.issn.1006-3080.2007.02.024.
[12] 王强,田学民.基于KPCA-LSSVM的软测量建模方法[J].化工学报,2011,62(10):2813-2817.DOI:10.3969/j.issn.0438-1157.2011.10.020.
[13] 李鸿坤,陈坚红,盛德仁,等.热力参数的KPCA-RBF网络建模及传感器故障诊断方法[J].振动、测试与诊断,2016,36(6):1044-1049.DOI:10.16450/j.cnki.issn.1004-6801.2016.06.002.
[14] 李军,常燕芝.基于KPCA-KMPMR的短期风电功率概率预测[J].电力自动化设备,2017,37(2):22-28.DOI:10.16081/j.issn.1006-6047.2017.02.004.
[15] 熊伟丽,王肖,陈敏芳,等.基于加权LS-SVM的青霉素发酵过程建模[J].化工学报,2012,63(9):2913-2919.DOI:10.3969/j.issn.0438-1157.2012.09.038.
[16] 李军,董海鹰.基于小波核偏最小二乘回归方法的混沌系统建模研究[J].物理学报,2008,57(8):4756-4765.DOI:10.3321/j.issn:1000-3290.2008.08.019.
[17] 汤健,柴天佑,余文,等.在线KPLS建模方法及在磨机负荷参数集成建模中的应用[J].自动化学报,2013,39(5):471-486.DOI:10.3724/SP.J.1004.2013.00471.
[18] 吕游,刘吉臻,杨婷婷,等.基于PLS特征提取和LS-SVM结合的NOx排放特性建模[J].仪器仪表学报,2013,34(11):2418-2424.DOI:10.19650/j.cnki.cjsi.2013.11.003.
[19] 莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2014(4):373-377.DOI:10.11830/ISSN.1000-5013.2014.04.0373.
[20] WANG Guicheng,XU Bing,JIANG Wenping.SVM modeling for glutamic acid fermentation process[C]//Control and Decision Conference.Yinchuan:IEEE Press,2016:5551-5555.DOI:10.1109/CCDC.2016.7531989.
[21] 李炜,徐鸿飞,倪源.基于核函数的PLS丁苯橡胶聚合转化率软测量[J].传感器与微系统,2012,31(3):143-146.DOI:10.3969/j.issn.1000-9787.2012.03.042.
[22] 徐晔,杜文莉,钱锋.基于核主元分析和最小二乘支持向量机的软测量建模[J].系统仿真学报,2007,19(17):3873-3875.DOI:10.3969/j.issn.1004-731X.2007.17.002.

相似文献/References:

[1]张观东,李军.KPCA-LSSVM方法在视频时间序列预测中应用[J].华侨大学学报(自然科学版),2018,39(2):281.[doi:10.11830/ISSN.1000-5013.201708019]
 ZHANG Guandong,LI Jun.Application of KPCA-LSSVM in Video Trace and Time Series Prediction[J].Journal of Huaqiao University(Natural Science),2018,39(3):281.[doi:10.11830/ISSN.1000-5013.201708019]
[2]胡启国,何奇,曹历杰.采用EEMD-KPCA处理的IHHO-LSSVM滚动轴承寿命预测模型[J].华侨大学学报(自然科学版),2022,43(2):145.[doi:10.11830/ISSN.1000-5013.202012025]
 HU Qiguo,HE Qi,CAO Lijie.IHHO-LSSVM Rolling Bearing Life Prediction Model Treated by EEMD-KPCA[J].Journal of Huaqiao University(Natural Science),2022,43(3):145.[doi:10.11830/ISSN.1000-5013.202012025]

备注/Memo

备注/Memo:
收稿日期: 2017-10-13
通信作者: 李军(1969-),男,博士,教授,主要从事计算智能与复杂非线性系统建模及控制的研究.E-mail:lijun691201@mail.lzjtu.cn.
基金项目: 国家自然科学基金资助项目(51467008)
更新日期/Last Update: 2018-05-20