[1]杨诚,李志农.采用PARAFAC的欠定盲分离中机械振源数估计方法[J].华侨大学学报(自然科学版),2018,39(3):337-342.[doi:10.11830/ISSN.1000-5013.201708005]
 YANG Cheng,LI Zhinong.Mechanical Vibration Source Number Estimation of Underdetermined Blind Source Separation Using PARAFAC[J].Journal of Huaqiao University(Natural Science),2018,39(3):337-342.[doi:10.11830/ISSN.1000-5013.201708005]
点击复制

采用PARAFAC的欠定盲分离中机械振源数估计方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第3期
页码:
337-342
栏目:
出版日期:
2018-05-20

文章信息/Info

Title:
Mechanical Vibration Source Number Estimation of Underdetermined Blind Source Separation Using PARAFAC
文章编号:
1000-5013(2018)03-0337-06
作者:
杨诚 李志农
南昌航空大学 无损检测技术教育部重点实验室, 江西 南昌 330063
Author(s):
YANG Cheng LI Zhinong
Key Laboratory of Nondestructive Testing of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China
关键词:
振源估计 平行因子分析 核一致诊断 欠定混合 盲源分离
Keywords:
source number estimation parallel factor analysis core consistency diagnostic underdetermined mixture blind source separation
分类号:
TN911.6
DOI:
10.11830/ISSN.1000-5013.201708005
文献标志码:
A
摘要:
针对复杂机械系统振源数未知的欠定盲源分离(UBSS)问题,为提高欠定盲源分离的性能,提出一种基于平行因子分析(PARAFAC)和核一致诊断(CORCONDIA)的欠定盲源数估计算法.该算法利用二阶非平稳源分离的基本思想,将中心化传感器数据分成不重叠的数据块,计算各数据块的单一时延协方差矩阵并叠加成三阶张量,即平行因子模型.利用核一致诊断算法估计PARAFAC模型的最佳组分数,从而得到机械系统的振源数.仿真实验结果表明:该算法可从非平稳欠定混合信号中准确估计振源数目.将所提算法应用于多机振动源实验,结果进一步验证了该方法的有效性.
Abstract:
Considering the existing problem of underdetermined blind separation(UBSS)in the complex mechanical system with unknown number of vibration sources, a new estimation algorithm of source number in the UBSS method based on parallel factor analysis(PARAFAC)and the core consistency diagnostic(CORCONDIA)is proposed to improve the performance of UBSS method. The main idea of this algorithm is that the centralized sensor data are firstly divided into some non-overlapping data blocks. Then single time-delay covariance matrices of each data block are calculated and stacked into a third-order tensor, which is constructed into the PARAFAC model. CORCONDIA is used to estimate the optimal number of components in PARAFAC model. Thus the obtained number of components is the number of vibration sources. The simulation results show that the proposed algorithm can accurately estimates the number of vibration sources from the underdetermined mixtures of non-stationary signal. It has been successfully applied to the test of multi-source mechanical vibration, and the experiment results further verify the effectiveness of the proposed algorithm.

参考文献/References:

[1] 王国彪,何正嘉,陈雪峰,等.机械故障诊断基础研究“何去何从”[J].机械工程学报,2013,49(1):63-72.DOI:10.3901/JME.2013.01.063.
[2] LEI Huang,TENG Long,WU Shunjun.Source enumeration for high-resolution array processing using improved Gerschgorin radii without eigendecomposition[J].IEEE Transactions on Signal Processing,2008,56(12):5916-5925.DOI:10.1109/TSP.2008.929331.
[3] 成玮,何正嘉,张周锁.基于独立分量分析的壳体结构振源数目估计方法[J].机械工程学报,2014,50(19):73-79.DOI:10.3901/JME.2014.19.073.
[4] WU H T,YANG J F,CHEN F K.Source number estimators using transformed Gerschgorin radii[J].IEEE Transactions on Signal Processing,1995,43(6):1325-1333.
[5] SEREDY?SKA-SOBECKA B,STEDMON C A,BOE-HANSEN R,et al.Monitoring organic loading to swimming pools by fluorescence excitation-emission matrix with parallel factor analysis(PARAFAC)[J].Water Research,2011,45(6):2306-2314.DOI:10.1016/j.watres.2011.01.010.
[6] MOUNIER S,RAYNAUD M,OURSEL B,et al.Fluorescence indexes and PARAFAC components-what is the best way[C]//Egu General Assembly Conference.Vienna:[s.n.],2015:15639.
[7] ZHANG Xiaofei,CAO Rencheng,ZHOU Ming.Noncircular-PARAFAC for 2D-DOA estimation of noncircular signals in arbitrarily spaced acoustic vector-sensor array subjected to unknown locations[J].EURASIP Journal on Advances in Signal Processing,2013,2013(1):1-10.DOI:10.1186/1687-6180-2013-107.
[8] 张小飞.平行因子分析理论及其在通信和信号处理中的应用[M].北京:电子工业出版社,2014.
[9] SIDIROPOULOS N D,BRO R,GIANNAKIS G B.Parallel factor analysis in sensor array processing[J].IEEE Transactions on Signal Processing,2000,48(8):2377-2388.DOI:10.1109/78.852018.
[10] SIDIROPOULOS N D,GIANNAKIS G B,BRO R.Blind PARAFAC receivers for DS-CDMA systems[J].IEEE Transactions on Signal Processing,2000,48(3):810-823.DOI:10.1109/78.824675.
[11] CHOI S,CICHOCKI A,BELOUCHRANI A.Blind separation of second-order nonstationary and temporally colored sources[C]//IEEE Signal Processing Workshop on Statistical Signal Processing.Piscataway:IEEE Press,2001:444-447.DOI:10.1109/SSP.2001.955318.
[12] BRO R,KIERS H A.A new efficient method for determining the number of components in PARAFAC models[J].Journal of Chemometrics,2003,17(5):274-286.DOI:10.1002/cem.801.
[13] 焦卫东.基于独立分量分析的旋转机械故障诊断方法研究[D].杭州:浙江大学,2003.

备注/Memo

备注/Memo:
收稿日期: 2017-08-08
通信作者: 李志农(1966-),男,教授,博士,主要从事智能检测与信号处理、机械设备状态检测与故障诊断的研究.E-mail:lizhinong@tsinghua.org.cn.
基金项目: 国家自然科学基金资助项目(51675258, 51261024, 51075372); 机械传动国家重点实验室开放基金资助项目(SKLMT-KFKT-201514); 南昌航空大学研究生创新专项基金资助项目(YC2016050)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2018-05-20