[1]何莉,肖茗方,张威亚.采用人群搜索算法的径向基函数神经网络参数整定方法[J].华侨大学学报(自然科学版),2018,39(2):299-305.[doi:10.11830/ISSN.1000-5013.201703113]
 HE Li,XIAO Mingfang,ZHANG Weiya.Parameter Adjusting Method of Radial Basis Function Neural Network Using Seeker Optimization Algorithm[J].Journal of Huaqiao University(Natural Science),2018,39(2):299-305.[doi:10.11830/ISSN.1000-5013.201703113]
点击复制

采用人群搜索算法的径向基函数神经网络参数整定方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第2期
页码:
299-305
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Parameter Adjusting Method of Radial Basis Function Neural Network Using Seeker Optimization Algorithm
文章编号:
1000-5013(2018)02-0299-07
作者:
何莉 肖茗方 张威亚
湖北工业大学 电气与电子工程学院, 湖北 武汉 430068
Author(s):
HE Li XIAO Mingfang ZHANG Weiya
School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
关键词:
径向基函数神经网络 人群搜索算法 逼近精度 可行性
Keywords:
radial basis function neural network seeker optimization algorithm approximation accuracy feasibility
分类号:
TP183
DOI:
10.11830/ISSN.1000-5013.201703113
文献标志码:
A
摘要:
针对径向基函数(RBF)神经网络的逼近结构中,对权值、基宽和中心向量的初始值等参数的选取不当,导致系统的鲁棒性变差、收敛精度降低,甚至不再收敛的问题,提出一种基于人群搜索算法的RBF神经网络的参数整定方法.以基于遗传算法和基于粒子群算法的RBF神经网络参数整定方法为对比条件,采用MATLAB软件进行实验与分析.结果表明:应用人群搜索算法去优化RBF神经网络的初始参数,能有效地提升RBF神经网络的逼近精度,验证了该算法的可行性.
Abstract:
In the approximation structure of radial basis function(RBF)neural network, its improper parameters such as weight, base width and initial value of the center vector will leads to poor system robustness and reduced convergence accuracy, or even no convergence. Aiming at this problem, the parameter adjusting method of RBF neural network based on seeker optimization algorithm is proposed. And using the parameter adjusting method of RBF neural network based on genetic algorithm and particle swarm optimization as comparison, the experiment and analysis are completed by MATLAB software. The results show that the seeker optimization algorithm can optimize the initial parameters of RBF neural network, so that the approximation accuracy of RBF neural network is effectively improved, and the feasibility of the algorithm is verified.

参考文献/References:

[1] 樊兆峰,马小平,邵晓根.非线性系统RBF神经网络多步预测控制[J].控制与决策,2014,29(7):1274-1278.DOI:10.13195/j.kzyjc.2013.0518.
[2] MOODY J,DARKEN C.Fast learning in networks of locally-tuned processing units[J].Neural Computation,1989,1:281-294.DOI:10.1162/neco.1989.1.2.281.
[3] 张森.基于径向基函数网络的MH/Ni电池荷电状态预测[J].化工学报,2006,57(9):2162-2166.DOI:10.3321/j.issn:0438-1157.2006.09.029.
[4] 罗玉涛,张保觉,赵克刚.基于神经网络的动力电池组SOC辨识方法[J].电源技术,2007,33(11):914-917.DOI:10.3969/j.issn.1002-087X.2007.11.019.
[5] 吕程,刘子云,刘子建,等.广义径向基函数神经网络在热误差建模中的应用[J].光学精密工程,2015,23(6):1705-1713.DOI:10.3788/OPE.20152306.1705.
[6] 吴玉香,张景,王聪.基于径向基函数神经网络的转子系统裂纹故障诊断[J].控制理论与应用,2014,31(5):1061-1068.DOI:10.7641/CTA.2014.30965.
[7] 韩红桂,乔俊飞,薄迎春.基于信息强度的RBF神经网络结构设计研究[J].自动化学报,2012,38(7):1083-1090.
[8] 崔志强,刘吉臻,刘金琨.基于微分器的燃料-汽压系统直接神经网络控制[J].动力工程学报,2012,32(6):445-449,493.DOI:10.3969/j.issn.1674-7607.2012.06.005.
[9] 胡云安,程春华,邹强,等.非仿射纯反馈系统的间接自适应神经网络控制[J].控制理论与应用,2014,31(4):467-478.DOI:10.7641/CTA.2014.30814.
[10] 高飞.MATLAB智能算法超级学习手册[M].北京:人民邮电出版社,2014.
[11] 马超,邓超,熊尧,等.一种基于混合遗传和粒子群的智能优化算法[J].计算机研究与发展,2013,50(11):2278-2286.
[12] DAI Chaohua,ZHU Yunfang,CHEN Weirong.Seeker optimization algorithm[C]//International Conference on Computational Intelligence and Security.Guangzhou:IEEE Press,2006:167-176.DOI:10.1109/ICCIAS.2006.294126.
[13] KETABI A,NAVARDI M J.Optimization shape of variable-capacitance micromotor using seeker optimization algorithm[J].Journal of Electrical and Technology,2012,7(2):212-220.DOI:10.5370/JEET.2012.7.2.212.
[14] KUMAR D,SAMANTARAY S R.Design of an advanced electric power distribution systems using seeker optimization algorithm[J].International Journal of Electrical Power and Energy Systems,2014,63(63):196-217.DOI:10.1016/j.ijepes.2014.05.073.
[15] LIN Jian,CHEN Chang.Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm[J].Nonlinear Dynamics,2014,76(1):509-517.DOI:10.1109/TCPMT.2014.2316301.
[16] 楼旭伟,楼辉波,朱剑锋.基于遗传算法径向基神经网络的交通流预测[J].中国科技论文,2013,8(11):1141-1144.DOI:10.3969/j.issn.2095-2783.2013.11.015.
[17] 龙亿,杜志江,王伟东.GA优化的RBF神经网络外骨骼灵敏度放大控制[J].哈尔滨工业大学学报,2015,47(7):26-30.DOI:10.11918/j.issn.0367-6234.2015.07.003.
[18] 王雅,孙耀宁,李瑞国.基于粒子群算法的RBF神经网络齿轮磨损预测[J].机车与液压,2016,44(3):183-187.DOI:10.3969/j.issn.1001-3881.2016.03.046.

相似文献/References:

[1]李军,方春杰.采用人群搜索算法的汽车半主动悬架LQG控制[J].华侨大学学报(自然科学版),2017,38(4):446.[doi:10.11830/ISSN.1000-5013.201704002]
 LI Jun,FANG Chunjie.LQG Control of Vehicle Semi-Active Suspension Using Seeker Optimization Algorithm[J].Journal of Huaqiao University(Natural Science),2017,38(2):446.[doi:10.11830/ISSN.1000-5013.201704002]

备注/Memo

备注/Memo:
收稿日期: 2017-03-06
通信作者: 何莉(1980-),女,副教授,博士,主要从事电力系统优化调度、系统分析与集成的研究.E-mail:heli.edu@hotmail.com.
基金项目: 国家自然科学基金资助项目(51379081); 国家留学基金资助项目(201608420056); 湖北省重大科技创新计划项目(2013AEA001)
更新日期/Last Update: 2018-03-20