[1]徐猛,王靖,杜吉祥.采用邻域关联性的非监督流形对齐算法[J].华侨大学学报(自然科学版),2018,39(2):256-261.[doi:10.11830/ISSN.1000-5013.201601015]
 XU Meng,WANG Jing,DU Jixiang.Unsupervised Manifold Alignment Algorithm Using Neighborhood Correlation[J].Journal of Huaqiao University(Natural Science),2018,39(2):256-261.[doi:10.11830/ISSN.1000-5013.201601015]
点击复制

采用邻域关联性的非监督流形对齐算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第2期
页码:
256-261
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Unsupervised Manifold Alignment Algorithm Using Neighborhood Correlation
文章编号:
1000-5013(2018)02-0256-06
作者:
徐猛 王靖 杜吉祥
华侨大学 计算机科学与技术学院, 福建 厦门 361021
Author(s):
XU Meng WANG Jing DU Jixiang
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
流形对齐 关联性 局部邻域 非监督
Keywords:
manifold alignment correlation local neighborhood unsupervised
分类号:
TP301.6
DOI:
10.11830/ISSN.1000-5013.201601015
文献标志码:
A
摘要:
假设对于两个流形上关联性较强的样本点,其邻域点之间也会具有较强的关联性.基于此假设,提出一种新的非监督流形对齐算法,通过学习局部邻域之间的关联性,挖掘不同流形样本点间的关联性;然后,将两个流形样本点投影到共同的低维空间,同时保持所挖掘的关联性.结果表明:与传统的非监督流形对齐算法比较,文中算法能更准确地找出不同流形数据在低维空间的匹配点.
Abstract:
This paper propose a basic assumption: for the points sampled from two manifolds which have strong correlations, their neighbors also have stronger correlations. Based on this assumption, this paper propose a new unsupervised manifold alignment algorithm which using the local neighborhood correlation to construct the relationship between the data sample points from different manifolds, and then projecting two manifold data to a common low-dimensional space while preserve the discovering of the correlation. The numerical experiments show that compared with the traditional unsupervised manifold alignment algorithms, this proposed algorithm can find the matching points of different manifold data in the low-dimensional space more accurately.

参考文献/References:

[1] ZHAO Zhenhua,HAO Xiaohong.Linear locality preserving and discriminating projection for face recognition[J].Journal of Electronics and Information Technology,2013,35(2):463-466.DOI:10.3724/SP.J.1146.2012.00601.
[2] WANG Chang,MAHADEVAN S.A general framework for manifold alignment[C]//Proceeding of AAAI International Conference.Welty:[s.n.],2009:101-109.
[3] HE Qing,CAI Hong,HAN Zhuangzhi,et al.ISAR target recognition based on nonlinear manifold learning [J].Acta Electronica Sinica,2010,38(3):585-590.
[4] MOULIN C,LARGERON C,DUCOTTET C,et al.Fisher linear discriminant analysis for text-image combination in multimedia information retrieval[J].Pattern Recognition,2014,47(1):260-269.DOI:10.1016/j.patcog.2013.06.003.
[5] BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.DOI:10.1162/089976603321780317.
[6] ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[7] MARTINEZ A M,KAK A C.Pattern analysis and machine intelligence PCA versus LDA[J].Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.
[8] LUNGA D,PRASAD S,CRAWFORD M,et al. Manifold learning based feature extraction for classification of hyper-spectral data: A review of advances in mabifold learning[J].Signal Processing Magazine,2014,31(1):55-66.
[9] DIAZ F,METZLER D.Pseudo-aligned multilingual corpora[C]//International Joint Conference on Artificial Intelligence.Hyderabad:AAAI Press,2007:2727-2732.
[10] HAM J,LEE D,SAULl L.Semi-supervised alignment of manifolds[C]//Proceddings of the International Workshop on Artificial Intelligence and Statistics.[S.l.]:ACM,2005:120-127.
[11] XIONG Liang,WANG Fei,ZHANG Changshui.Semi-definite manifold alignment[M].Berlin:Springer,2007:773-781.
[12] WANG Chang,MAHADEVAN S.Manifold alignment using procrustes analysis[C]//Proceedings of the 25th International Conference on Machine Learning.Edinburgh:ACM,2008:1120-1127.DOI:10.1145/1390156.1390297.
[13] WANG Chang,MAHADEVAN S.Manifold alignment preserving global geometry[C]//Proceedings of the 23th International Joint Conference on Artificial Intelligence.Florida:[s.n.],2013:1743-1749.
[14] WANG Chang,MAHADEVAN S.Manifold alignment without correspondence[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligenec.Pasadena:[s.n.],2009:1273-1278.
[15] PEI Yuru,HUANG Fengchun,SHI Fuhao,et al.Unsupervised image matching based on manifold alignment[J].Transactions on Pattern Analysis and Machine Intelligence,2012,34(8):1658-1664.
[16] HEIKKILA M,PIETIKAINEN M,SCHMID C.Description of interest regions with centersymmetric local binary patterns[C]//The Indian Conference on Computer Vision, Graphics and Image Processing.Madurai:[s.n.],2006:58-69.

相似文献/References:

[1]吴莞姝,李欣迪,黄梦欣.街道环境和人群活动与主观感知的内在关联性[J].华侨大学学报(自然科学版),2023,44(6):707.[doi:10.11830/ISSN.1000-5013.202305021]
 WU Wanshu,LI Xindi,HUANG Mengxin.Internal Correlation Between Street Environment, Crowd Activities and Subjective Perception[J].Journal of Huaqiao University(Natural Science),2023,44(2):707.[doi:10.11830/ISSN.1000-5013.202305021]

备注/Memo

备注/Memo:
收稿日期: 2016-01-10
通信作者: 王靖(1981-),男,教授,博士,主要从事模式识别、推荐系统的研究.E-mail:wroaring@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(61370006); 福建省自然科学基金资助项目(2014J01237); 福建省教育厅科技项目(JA12006); 福建省高等学校新世纪优秀人才支持计划(2012FJ-NCET-ZR01); 华侨大学中青年教师科技创新资助计划(ZQN-PY116)
更新日期/Last Update: 2018-03-20